While the evolutionary interests of mobile genetic elements may differ from those of their bacterial hosts, these elements can be beneficial for their hosts by delivering, disrupting, or activating genes. A recent paper by Sastre-Domínguez et al. describes a novel synergistic effect of mobile elements in clinically relevant bacteria, whereby conjugative plasmids that carry transposable elements can be agents of rapid adaptive change through an elevation in transposition-mediated mutation rate.
View Article and Find Full Text PDFTo increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise.
View Article and Find Full Text PDFDuring the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium .
View Article and Find Full Text PDFTradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies.
View Article and Find Full Text PDFMultidrug resistance (MDR) of pathogens is an ongoing public health crisis exacerbated by the horizontal transfer of antibiotic resistance genes via conjugative plasmids. Factors that stabilize these plasmids in bacterial communities contribute to an even higher incidence of MDR, given the increased likelihood that a host will already contain a plasmid when it acquires another through conjugation. Here, we show one such stabilizing factor is host-plasmid coevolution under antibiotic selection, which facilitated the emergence of MDR via two distinct plasmids in communities consisting of Escherichia coli and Klebsiella pneumoniae once antibiotics were removed.
View Article and Find Full Text PDFOrganisms often modify their environments to their advantage through a process of niche construction. Environments that are improved through positive niche construction can be viewed as a public good. If free riders appear that do not contribute to the shared resource and therefore do not incur any associated costs, the constructed niche may become degraded, resulting in a tragedy of the commons and the extinction of niche constructors.
View Article and Find Full Text PDFEpistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple "peaks" of high-fitness allele combinations are separated by "valleys" of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape.
View Article and Find Full Text PDFViral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host.
View Article and Find Full Text PDFWhen a more complex, functionally integrated entity emerges from the association of simpler, initially independent entities, a major evolutionary transition has occurred. Transitions that result from the association of different species include the evolution of the eukaryotic cell and some obligate mutualisms. Recent studies are revolutionizing our understanding of how these intimate interspecific associations come to be, revealing how and to what extent each partner contributes to the relationship, and how partners mediate conflict.
View Article and Find Full Text PDFThe evolution of cooperation-costly behavior that benefits others-faces one clear obstacle. Namely, cooperators are always at a competitive disadvantage relative to defectors, individuals that reap the benefits, but evade the cost of cooperation. One solution to this problem involves genetic hitchhiking, where the allele encoding cooperation becomes linked to a beneficial mutation, allowing cooperation to rise in abundance.
View Article and Find Full Text PDFPopulations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity.
View Article and Find Full Text PDFMicrobes perform many costly biological functions that benefit themselves, and may also benefit neighbouring cells. Losing the ability to perform such functions can be advantageous due to cost savings, but when they are essential for growth, organisms become dependent on ecological partners to compensate for those losses. When multiple functions may be lost, the ecological outcomes are potentially diverse, including independent organisms only; one-way dependency, where one partner performs all functions and others none; or mutual interdependency where partners perform complementary essential functions.
View Article and Find Full Text PDFMany bacteria secrete compounds which act as public goods. Such compounds are often under quorum sensing (QS) regulation, yet it is not understood exactly when bacteria may gain from having a public good under QS regulation. Here, we show that the optimal public good production rate per cell as a function of population size (the optimal production curve, OPC) depends crucially on the cost and benefit functions of the public good and that the OPC will fall into one of two categories: Either it is continuous or it jumps from zero discontinuously at a critical population size.
View Article and Find Full Text PDFIn the context of Wright's adaptive landscape, genetic epistasis can yield a multipeaked or "rugged" topography. In an unstructured population, a lineage with selective access to multiple peaks is expected to fix rapidly on one, which may not be the highest peak. In a spatially structured population, on the other hand, beneficial mutations take longer to spread.
View Article and Find Full Text PDFCooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence.
View Article and Find Full Text PDFIn this review, we demonstrate how game theory can be a useful first step in modeling and understanding interactions among bacteria that produce and resist antibiotics. We introduce the basic features of evolutionary game theory and explore model microbial systems that correspond to some classical games. Each game discussed defines a different category of social interaction with different resulting population dynamics (exclusion, coexistence, bistability, cycling).
View Article and Find Full Text PDFWithin nature, many groups exhibit division of labor. Individuals in these groups are under seemingly antagonistic pressures to perform the task most directly beneficial to themselves and to potentially perform a less desirable task to ensure the success of the group. Performing experiments to study how these pressures interact in an evolutionary context is challenging with organic systems because of long generation times and difficulties related to group propagation and fine-grained control of within-group and between-group pressures.
View Article and Find Full Text PDFReproductive division of labor is a hallmark of multicellular organisms. However, the evolutionary pressures that give rise to delineated germ and somatic cells remain unclear. Here we propose a hypothesis that the mutagenic consequences associated with performing metabolic work favor such differentiation.
View Article and Find Full Text PDFThe extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
From microbes to humans, the success of many organisms is achieved by dividing tasks among specialized group members. The evolution of such division of labor strategies is an important aspect of the major transitions in evolution. As such, identifying specific evolutionary pressures that give rise to group-level division of labor has become a topic of major interest among biologists.
View Article and Find Full Text PDF