Ascertaining how racket orientation angle differences at ball-impact influence the accuracy of different squash strokes could assist player skill development and possibly reduce the number of unforced errors hit within a match. The purpose of this study was to identify differences in racket orientation angles of accurate and inaccurate forehand and backhand drive, volley and drop shots. A magnetic-inertial measurement unit embedded in a racket output orientation angles of twelve male junior players, with five accurate and five inaccurate shots per player per stroke analysed.
View Article and Find Full Text PDFKnowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke.
View Article and Find Full Text PDFTo maintain the accuracy of squash shots under varying conditions, such as the oncoming ball's velocity and trajectory, players must adjust their technique. Although differences in technique between skilled and less-skilled players have been studied, it is not yet understood how players vary their technique in a functional manner to maintain accuracy under varying conditions. This study compared 3-dimensional joint and racket kinematics and their variability between accurate and inaccurate squash forehand drives of 9 highly skilled and 9 less-skilled male athletes.
View Article and Find Full Text PDFMagnetic-inertial measurement units (MIMUs) are becoming more prevalent in sports biomechanics and may be a viable tool to evaluate kinematic parameters. This study examined the accuracy of a MIMU to estimate orientation angles under static conditions and dynamically from a squash racket during a forehand drive shot. A MIMU was mounted onto a goniometer and moved through 0-90°, with static data collected at 10° increments during 10 repetitions of all three axes.
View Article and Find Full Text PDFBackground: Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation.
Methods: Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs.
To examine the physiological strain associated with hypoxic high intensity interval training (HHIT), 8 highly trained young runners (age, 18.6 ± 5.3 years) randomly performed, 5 × 3-minute intervals in either normoxic (N, 90% of the velocity associated with VO(2max), vVO(2max)) or hypoxic (H, simulated 2,400-m altitude, 84% of νVO(2max)) conditions.
View Article and Find Full Text PDF