Transient displacement of blood in vessel lumen with saline injection is necessary in the conductance method for measurement of arterial cross-sectional area (CSA). The displacement of blood is dictated by the interactions between arterial flow hemodynamics and saline injection dynamics. The objective of the present study is to understand how the accuracy of conductance measurements is affected by the saline injection.
View Article and Find Full Text PDFBackground: Bedside placement of peripherally inserted central catheters (PICCs) may result in navigation to undesirable locations, such as the contralateral innominate or jugular vein, instead of the superior vena cava or right atrium. Although some guidance and tip location tools exist, they have inherent limitations because of reliance on physiological measures (eg, chest landmarks, electrocardiogram, etc), instead of anatomical assessment (ie, geometric changes in the vasculature). In this study, an accurate, anatomically based, non-X-ray guidance tool placed on a novel 0.
View Article and Find Full Text PDFParallel conductance (electric current flow through surrounding tissue) is an important determinant of accurate measurements of arterial lumen diameter, using the conductance method. The present study is focused on the role of non-uniform geometrical/electrical configurations of surrounding tissue, which are a primary source of electric current leakage. Computational models were constructed to simulate the conductance catheter measurement with two different excitation electrodes spacings (i.
View Article and Find Full Text PDF