We introduce a novel geometry-informed irreversible perturbation that accelerates convergence of the Langevin algorithm for Bayesian computation. It is well documented that there exist perturbations to the Langevin dynamics that preserve its invariant measure while accelerating its convergence. Irreversible perturbations and reversible perturbations (such as Riemannian manifold Langevin dynamics (RMLD)) have separately been shown to improve the performance of Langevin samplers.
View Article and Find Full Text PDFHere we show that brain seizures can be effectively suppressed through random modulation of the brain medium. We use an established mesoscale cortical model in the form of a system of coupled stochastic partial differential equations. We show that by temporal and spatial randomization of parameters governing the firing rates of the excitatory and inhibitory neuron populations, seizure waves can be significantly suppressed.
View Article and Find Full Text PDF