Publications by authors named "Benjamin J Peters"

Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization.

View Article and Find Full Text PDF

Pyrazinamide, a first-line antibiotic used against , has been shown to act in a pH-dependent manner . Why pyrazinamide, an antitubercle prodrug discovered more than 65 years ago, exhibits this pH-dependent activity was unclear. Upon entering mycobacterial cells, pyrazinamide is deamidated to pyrazinoate by an enzymatic process and exists in an acid-base equilibrium with pyrazinoic acid.

View Article and Find Full Text PDF

Despite the increasing policy focus on integrated dementia care in the UK, little is known about the opportunities and challenges encountered by practitioners charged with implementing these policies on the ground. We undertook an extensive, mixed-methods analysis of how a contemporary multidisciplinary dementia pathway in the UK was experienced and negotiated by service providers. Our pragmatic mixed methods design incorporated three types of research interaction with practitioners: (a) Semi-structured interviews (n = 31) and focus group discussions (n = 4), (b) Practitioner 'shadowing' observations (n = 19), and (c) Service attendance and performance metrics reviews (n = 8).

View Article and Find Full Text PDF

Menaquinones (MKs) are essential for electron transport in prokaryotes, and importantly, partially saturated MKs represent a novel virulence factor. However, little is known regarding how the degree of saturation in the isoprenyl side chain influences conformation or quinone redox potential. MenJ is an enzyme that selectively reduces the second isoprene unit on MK-9 and is contextually essential for the survival of Mycobacterium tuberculosis in J774A.

View Article and Find Full Text PDF

Pyridine-based small-molecule drugs, vitamins, and cofactors are vital for many cellular processes, but little is known about their interactions with membrane interfaces. These specific membrane interactions of these small molecules or ions can assist in diffusion across membranes or reach a membrane-bound target. This study explores how minor differences in small molecules (isoniazid, benzhydrazide, isonicotinamide, nicotinamide, picolinamide, and benzamide) can affect their interactions with model membranes.

View Article and Find Full Text PDF

Menaquinones (naphthoquinones, MK) are isoprenoids that play key roles in the respiratory electron transport system of some prokaryotes by shuttling electrons between membrane-bound protein complexes acting as electron acceptors and donors. Menaquinone-2 (MK-2), a truncated MK, was synthesized, and the studies presented herein characterize the conformational and chemical properties of the hydrophobic MK-2 molecule. Using 2D NMR spectroscopy, we established for the first time that MK-2 has a folded conformation defined by the isoprenyl side-chain folding back over the napthoquinone in a U-shape, which depends on the specific environmental conditions found in different solvents.

View Article and Find Full Text PDF

The interaction of benzoic acid and benzoate with model membrane systems was characterized to understand the molecular interactions of the two forms of a simple aromatic acid with the components of the membrane. The microemulsion system based on bis(2-ethylhexyl)sulfosuccinate (AOT) allowed determination of the molecular positioning using 1D NMR and 2D NMR spectroscopic methods. Benzoic acid and benzoate were both found to penetrate the membrane/water interfaces; however, the benzoic acid was able to penetrate much deeper and thus is more readily able to traverse a membrane.

View Article and Find Full Text PDF