Publications by authors named "Benjamin J Coscia"

Molecular dynamics (MD) simulations of linear amylose fragments containing 10 to 40 glucose units were used to study the complexation of the prototypical compound, 3-pentadecylphenol (PDP)─a natural product with surfactant-like properties─in aqueous solution. The amylose-PDP binding leverages mainly hydrophobic interactions together with excluded volume effects. It was found that while the most stable complexes contained PDP inside the helical structure of the amylose in the expected guest-host (inclusion) complexation manner, at higher temperatures, the commonly observed PDP-amylose complexes often involved more nonspecific interactions than inclusion complexation.

View Article and Find Full Text PDF

Polymers are the most commonly used packaging materials for nutrition and consumer products. The ever-growing concern over pollution and potential environmental contamination generated from single-use packaging materials has raised safety questions. Polymers used in these materials often contain impurities, including unreacted monomers and small oligomers.

View Article and Find Full Text PDF

Aggregation in aqueous solution can have important implications on both the exposure of a drug and its pharmaceutical manufacturability. However, the drug aggregates formed can be very small and, thus, difficult to interrogate experimentally. On the other hand, at higher supersaturations where larger aggregates are supported, the chemical system is inherently metastable and therefore likewise challenging to study from an experimental standpoint.

View Article and Find Full Text PDF

The complex development of cosmetic and medical formulations relies on an ever-growing accuracy of predictive models of hair surfaces. Hitherto, modeling efforts have focused on the description of 18-methyl eicosanoic acid (18-MEA), the primary fatty acid covalently attached to the hair surface, without explicit modeling of the protein layer. Herein, the molecular details of the outermost surface of the human hair fiber surface, also called the F-layer, were studied using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The substitution of natural, bio-based and/or biodegradable polymers for those of petrochemical origin in consumer formulations has become an active area of research and development as the sourcing and destiny of material components becomes a more critical factor in product design. These polymers often differ from their petroleum-based counterparts in topology, raw material composition and solution behaviour. Effective and efficient reformulation that maintains comparable cosmetic performance to existing products requires a deep understanding of the differences in frictional behaviour between polymers as a function of their molecular structure.

View Article and Find Full Text PDF

Amphiphilic monomers in polar solvents can self-assemble into lyotropic liquid crystal (LLC) bicontinuous cubic structures under the right composition and temperature conditions. After cross-linking, the resulting polymer membranes with three-dimensional (3D) continuous uniform channels are excellent candidates for filtration applications. Designing such membranes with the desired physical and chemical properties requires molecular-level understanding of the structure, which can be obtained through molecular modeling.

View Article and Find Full Text PDF

Appropriate time series modeling of complex diffusion in soft matter systems on the microsecond time scale can provide a path toward inferring transport mechanisms and predicting bulk properties characteristic of much longer time scales. In this work we apply nonparametric Bayesian time series analysis, more specifically the sticky hierarchical Dirichlet process autoregressive hidden Markov model (HDP-AR-HMM) to solute center-of-mass trajectories generated from long molecular dynamics (MD) simulations in a cross-linked inverted hexagonal phase lyotropic liquid crystal (LLC) membrane in order to automatically detect a variety of solute dynamical modes. We can better understand the mechanisms controlling these dynamical modes by grouping the states identified by the HDP-AR-HMM into clusters based on multiple metrics aimed at distinguishing solute behavior based on their fluctuations, dwell times in each state, and positions within the inhomogeneous membrane structure.

View Article and Find Full Text PDF

Fitting mathematical models with a direct connection to experimental observables to the outputs of molecular simulations can be a powerful tool for extracting important physical information from them. In this study, we present two new approaches that use stochastic time series modeling to predict long-time-scale behavior and macroscopic properties from molecular simulation, which can be generalized to other molecular systems where complex diffusion occurs. In our previous work, we studied long molecular dynamics (MD) simulation trajectories of a cross-linked H phase lyotropic liquid crystal (LLC) membrane, where we observed subdiffusive solute transport behavior characterized by intermittent hops separated by periods of entrapment.

View Article and Find Full Text PDF

The uniform size and complex chemical topology of the pores formed by self-assembled amphiphilic molecules such as liquid crystals make them promising candidates for selective separations. In this work, we observe the transport of water, sodium ions, and 20 small polar solutes within the pores of a lyotropic liquid crystal (LLC) membrane using atomistic molecular simulations. We find that the transport of a species is dependent not only on molecular size but also on chemical functionality.

View Article and Find Full Text PDF

Periodic, nanostructured porous polymer membranes made from the cross-linked inverted hexagonal phase of self-assembled lyotropic liquid crystals (LLCs) are a promising class of materials for selective separations. In this work, we investigate an experimentally characterized LLC polymer membrane using atomistic molecular modeling. In particular, we compare simulated X-ray diffraction (XRD) patterns with experimental XRD data to quantify and understand the differences between simulation and experiment.

View Article and Find Full Text PDF