Insulin-degrading enzyme (IDE) is a 110 kDa chambered zinc metalloendopeptidase that degrades insulin, amyloid β, and other intermediate-sized aggregation prone peptides that adopt β-structures. Structural studies of IDE in complex with multiple physiological substrates have suggested a role for hydrophobic and aromatic residues of the IDE active site in substrate binding and catalysis. Here, we examine functional requirements for conserved hydrophobic and aromatic IDE active site residues that are positioned within 4.
View Article and Find Full Text PDFHere we report the enzymologic characterization of recombinant human pitrilysin metallopeptidase 1 (Pitrm1) and derivative mutants including the arginine-to-glutamine substitution mutant Pitrm1 R183Q, which has been implicated in inherited amyloidogenic neuropathy. Recombinant Pitrm1 R183Q was readily expressed in and purified from Escherichia coli, but was less active than the recombinant wild-type enzyme against recombinant amyloid beta-peptide (Aβ 1-40). A novel fluorogenic substrate derived from the reported Aβ 1-40 core peptide cleavage sequence, Mca-KLVFFAEDK-(Dnp)-OH, was synthesized and applied to real-time kinetic study of Pitrm1 and derivative mutants including Pitrm1 R183Q.
View Article and Find Full Text PDFHistidine decarboxylase (HDC) is an enzyme that converts histidine to histamine. Inhibition of HDC has several medical applications, and HDC inhibitors are of considerable interest for the study of histidine metabolism. (S)-α-Fluoromethylhistidine di-hydrochloride (α-FMH) is a potent HDC inhibitor that is commercially available at high cost in small amounts only.
View Article and Find Full Text PDFHeterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly.
View Article and Find Full Text PDFMethods Mol Biol
July 2013
Here, we describe a capillary electrophoresis method for evaluating proteolysis of the amyloid beta peptide (Aβ) 1-40. This method is suitable for kinetic studies, demands little specialized equipment, and consumes only small quantities of a commercially available substrate whose physiological accumulation is thought to underlie the development of Alzheimer's disease.
View Article and Find Full Text PDFThe insulin-degrading enzyme (IDE) cleaves numerous small peptides, including biologically active hormones and disease-related peptides. The propensity of IDE to degrade neurotoxic Aβ peptides marks IDE as a potential therapeutic target for Alzheimer disease. Using a synthetic reporter based on the yeast a-factor mating pheromone precursor, which is cleaved by multiple IDE orthologs, we identified seven small molecules that stimulate rat IDE activity in vitro.
View Article and Find Full Text PDFDistinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast.
View Article and Find Full Text PDFInsulin-degrading enzyme (IDE) (insulysin) is a zinc metallopeptidase that metabolizes several bioactive peptides, including insulin and the amyloid β peptide. IDE is an unusual metallopeptidase in that it is allosterically activated by both small peptides and anions, such as ATP. Here, we report that the ATP-binding site is located on a portion of the substrate binding chamber wall arising largely from domain 4 of the four-domain IDE.
View Article and Find Full Text PDFThe S. cerevisiae genome encodes two M16A enzymes: Axl1p and Ste23p. Of the two, Ste23p shares significantly higher sequence identity with M16A enzymes from other species, including mammalian insulin-degrading enzymes (IDEs).
View Article and Find Full Text PDFJ Neurosci Methods
March 2009
According to the amyloid hypothesis, Abeta peptides are neurotoxic and underlie development and progression of Alzheimer's disease (AD). Multiple Abeta clearance mechanisms, including destruction of the peptides by proteolytic enzymes, are hypothesized to regulate physiological Abeta peptide levels. The insulin-degrading enzyme (IDE) is considered one of the predominant enzymes having Abeta degrading activity.
View Article and Find Full Text PDFPitrilysin is a bacterial protease that is similar to the mammalian insulin-degrading enzyme, which is hypothesized to protect against the onset of Alzheimer's disease, and the yeast enzymes Axl1p and Ste23p, which are responsible for production of the a-factor mating pheromone in Saccharomyces cerevisiae. The lack of a phenotype associated with pitrilysin deficiency has hindered studies of this enzyme. Herein, we report that pitrilysin can be heterologously expressed in yeast such that it functionally substitutes for the shared roles of Axl1p and Ste23p in pheromone production, resulting in a readily observable phenotype.
View Article and Find Full Text PDF