Subsurface exploration of ice-covered planets and moons presents communications challenges because of the need to communicate through kilometers of ice. The objective of this task is to develop the capability to wirelessly communicate through kilometers of ice and thus complement the potentially failure-prone tethers deployed behind an ice-penetrating probe on Ocean Worlds. In this paper, the preliminary work on the development of wireless deep-ice communication is presented and discussed.
View Article and Find Full Text PDFAutonomy is becoming increasingly important for the robotic exploration of unpredictable environments. One such example is the approach, proximity operation, and surface exploration of small bodies. In this article, we present an overview of an estimation framework to approach and land on small bodies as a key functional capability for an autonomous small-body explorer.
View Article and Find Full Text PDF