Publications by authors named "Benjamin Guikema"

Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells.

View Article and Find Full Text PDF

Cobra venom factor (CVF) is a complement activating protein in cobra venom, which functionally resembles C3b, and has been used for decades for decomplementation of serum to investigate the role of complement in many model systems of disease. The use of CVF for clinical practice is considered impractical because of immunogenicity issues. Humanization of CVF was recently demonstrated to yield a potent CVF-like molecule.

View Article and Find Full Text PDF

To obtain proteins with the complement-depleting activity of Cobra Venom Factor (CVF), but with less immunogenicity, we have prepared human C3/CVF hybrid proteins, in which the C-terminus of the alpha-chain of human C3 is exchanged with homologous regions of the C-terminus of the beta-chain of CVF. We show that these hybrid proteins are able to deplete complement, both in vitro and in vivo. One hybrid protein, HC3-1496, is shown to be effective in reducing complement-mediated damage in two disease models in mice, collagen-induced arthritis and myocardial ischemia/reperfusion injury.

View Article and Find Full Text PDF

Inflammation plays a critical role in promoting smooth muscle migration and proliferation during vascular diseases such as postangioplasty restenosis and atherosclerosis. Another common feature of many vascular diseases is the contribution of reactive oxygen (ROS) and reactive nitrogen (RNS) species to vascular injury. Primary sources of ROS and RNS in smooth muscle are several isoforms of NADPH oxidase (Nox) and the cytokine-regulated inducible nitric oxide (NO) synthase (iNOS).

View Article and Find Full Text PDF

The humoral response to invading pathogens is mediated by a repertoire of innate immune molecules and receptors able to recognize pathogen-associated molecular patterns. Mannose binding lectin (MBL) and ficolins are initiation molecules of the lectin complement pathway (LCP) that bridge innate and adaptive immunity. Activation of the MBL-dependent lectin pathway, to the level of C3 cleavage, requires functional MASP-2, C2, C4 and C3, all of which have been identified with genetic polymorphisms that can affect protein concentration and function.

View Article and Find Full Text PDF

Although the inflammatory cytokine interleukin-1beta (IL-beta) is an important regulator of gene expression in vascular smooth muscle (VSM), the signal transduction pathways leading to transcriptional activation upon IL-1beta stimulation are poorly understood. Recent studies have implicated IL-1beta-mediated ERK1/2 activation in the upregulation of type II nitric oxide synthase (iNOS) in VSM. We report that these events are mediated in a phospholipase C (PLC)- and protein kinase C (PKC)-delta-dependent manner utilizing a signaling mechanism independent of p21(ras) (Ras) and Raf1 activation.

View Article and Find Full Text PDF

Nitric oxide (NO) is a diatomic free radical that plays an important role in the homeostatic regulation of the central nervous, immune, and cardiovascular systems. In addition to its interaction with guanylate cyclase, which results in the production of the second messenger cyclic GMP, there is now a large body of literature indicating that many of the effects associated with the production of NO are due to the nitrosation of cysteine residues in proteins. In this review, we outline the primary chemical pathways that may account for protein nitrosation in cells and tissues.

View Article and Find Full Text PDF

The role of reactive oxygen species (ROS) in regulating the expression of the inducible nitric oxide synthase (iNOS) was studied in rat aortic vascular smooth muscle cells (VSMC). We hypothesized that ROS regulate iNOS expression through the mitogen-activated protein kinases ERK and p38(MAPK). We found that interleukin-1beta (IL-1beta) stimulated the production of hydrogen peroxide (H2O2) which could be inhibited by loading the cells with the H2O2-scavenging enzyme catalase.

View Article and Find Full Text PDF