The discovery of novel, reversible and competitive tripeptide inhibitors of the Hepatitis C virus NS3/4A serine protease is described. These inhibitors are characterized by the presence of a C-terminal phenethyl amide group, which extends into the prime side of the enzyme. Initial SAR together with molecular modeling and data from site-directed mutagenesis suggest an interaction of the phenethyl amide group with Lys-136.
View Article and Find Full Text PDFN-terminal truncation of the hexapeptide ketoacid 1 gave rise to potent tripeptide inhibitors of the hepatitis C virus NS3 protease/NS4A cofactor complex. Optimization of these tripeptides led to ketoacid 30 with an IC50 of 0.38 microM.
View Article and Find Full Text PDFThe difluoromethyl group was designed by computational chemistry methods as a mimetic of the canonical P1 cysteine thiol for inhibitors of the hepatitis C virus NS3 protease. This modification led to the development of competitive, non-covalent inhibitor 4 (K(i) 30 nM) and reversible covalent inhibitors (6, K(i) 0.5 nM; and 8 K*(i) 10 pM).
View Article and Find Full Text PDF