Publications by authors named "Benjamin Gerber"

We explored whether increased C-nociceptor excitability predicts analgesic effects of topical lidocaine in 33 patients with mono- (n = 15) or poly-neuropathy (n = 18). Excitability of C-nociceptors was tested by transcutaneous electrical sinusoidal (4 Hz) and half sine wave (single 500 ms pulse) stimulation delivered to affected and non-affected sites. Analgesic effects of 24 hrs topical lidocaine were recorded.

View Article and Find Full Text PDF

Endolysins are bacteriophage-encoded peptidoglycan hydrolases targeting the cell wall of host bacteria their cell wall-binding domains (CBDs). The molecular basis for selective recognition of surface carbohydrate ligands by CBDs remains elusive. Here, we describe, in atomic detail, the interaction between the phage endolysin domain CBD500 and its cell wall teichoic acid (WTA) ligands.

View Article and Find Full Text PDF

Astronauts in the microgravity environment experience significant changes in their cardiovascular hemodynamics. In this study, a system-level numerical model has been utilized to simulate the short-term adaptations of hemodynamic parameters due to the gravitational removal in space. The effect of lower body negative pressure (LBNP) as a countermeasure has also been simulated.

View Article and Find Full Text PDF

Introduction: Stress-related transient inhibition of memory formation in the hippocampus has been hypothesized as one of the underlying pathomechanisms of transient global amnesia (TGA). TGA episodes, during which patients cannot encode and recall new information (anterograde amnesia affecting episodic long-term memory), are frequently preceded by a psychologically or physically stressful event.

Methods: We measured salivary cortisol during acute TGA in 14 patients, as well as cortisol day-profiles and the effect of experimental exposure to stress (using the socially evaluated cold pressor test) on cortisol levels during the subacute phase.

View Article and Find Full Text PDF

Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from species.

View Article and Find Full Text PDF

Transient global amnesia (TGA) is a disorder with reversible anterograde disturbance of explicit memory, frequently preceded by an emotionally or physically stressful event. By using magnetic resonance imaging (MRI) following an episode of TGA, small hippocampal lesions have been observed. Hence it has been postulated that the disorder is caused by the stress-related transient inhibition of memory formation in the hippocampus.

View Article and Find Full Text PDF

Transient global amnesia (TGA) is a disorder characterized by a sudden attack of severe anterograde memory disturbance that is frequently preceded by emotional or physical stress and resolves within 24 h. By using MRI following the acute episode in TGA patients, small lesions in the hippocampus have been observed. Hence, it has been hypothesized that the disorder is caused by a stress-related transient inhibition of memory formation in the hippocampus.

View Article and Find Full Text PDF

Familial hemiplegic migraine type 1 (FHM-1), a rare hereditary form of migraine with aura and hemiparesis, serves as a good model for exploring migraine pathophysiology. The FHM-1 gene encodes the pore-forming Ca(V)2.1 subunit of human P/Q-type voltage-gated Ca(2+) channels (VGCCs).

View Article and Find Full Text PDF

The Intracellular Fibroblast Growth Factor (iFGF) subfamily includes four members (FGFs 11-14) of the structurally related FGF superfamily. Previous studies showed that the iFGFs interact directly with the pore-forming (alpha) subunits of voltage-gated sodium (Nav) channels and regulate the functional properties of sodium channel currents. Sequence heterogeneity among the iFGFs is thought to confer specificity to this regulation.

View Article and Find Full Text PDF

Considerable experimental evidence has accumulated demonstrating a role for voltage-gated K(+) (Kv) channel pore-forming (alpha) subunits of the Kv4 subfamily in the generation of fast transient outward K(+), I(A), channels. Immunohistochemical data suggest that I(A) channels in hippocampal and cortical pyramidal neurons reflect the expression of homomeric Kv4.2 channels.

View Article and Find Full Text PDF

Fibroblast growth factor 14 (FGF14) belongs to the intracellular FGF homologous factor subfamily of FGF proteins (iFGFs) that are not secreted and do not activate tyrosine kinase receptors. The iFGFs, however, have been shown to interact with the pore-forming (alpha) subunits of voltage-gated Na+ (Na(v)) channels. The neurological phenotypes seen in Fgf14-/- mice and the identification of an FGF14 missense mutation (FGF14(F145S)) in a Dutch family presenting with cognitive impairment and spinocerebellar ataxia suggest links between FGF14 and neuronal functioning.

View Article and Find Full Text PDF

Genetic ablation of the fibroblast growth factor (Fgf) 14 gene in mice or a missense mutation in Fgf14 in humans causes ataxia and cognitive deficits. These phenotypes suggest that the neuronally expressed Fgf14 gene is essential for regulating normal neuronal activity. Here, we demonstrate that FGF14 interacts directly with multiple voltage-gated Na(+) (Nav) channel alpha subunits heterologously expressed in non-neuronal cells or natively expressed in a murine neuroblastoma cell line.

View Article and Find Full Text PDF