Publications by authors named "Benjamin Feinberg"

Article Synopsis
  • Clinical islet transplantation for type 1 diabetes is hindered by the lack of pancreas donors and the necessity for lifelong immunosuppression.
  • Researchers are exploring a new bioartificial pancreas (iBAP) that utilizes silicon nanopore membranes to potentially replace the need for immunosuppressants while maintaining islet function.
  • Their findings indicate that for effective insulin production, specific perifusion rates must be met, with successful insulin secretion responses observed in both lab and live pig models.
View Article and Find Full Text PDF

While extracorporeal membrane oxygenation (ECMO) is a valuable therapy for patients with lung or heart failure, clinical use of ECMO remains limited due to hemocompatibility concerns with pro-coagulatory hollow fiber membrane geometries. Previously, we demonstrated the feasibility of silicon nanopore (SNM) and micropore (SμM) membranes for transport between two liquid-phase compartments in blood-contacting devices. Herein, we investigate various pore sizes of SNM and SμM membranes - alone or with a polydimethylsiloxane (PDMS) protective coating - for parameters that determine suitability for gas exchange.

View Article and Find Full Text PDF

Microelectromechanical systems (MEMS) have enabled the fabrication of silicon nanopore membranes (SNM) with uniform non-overlapping "slit shaped" pores. The application of SNM has been suggested for high selectivity of biomolecules in a variety of medical filtration applications. The aim of this study was to rigorously quantify the differences in sieving between slit pore SNM and more commonly modeled cylindrical pore membranes, including effects of the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) interactions.

View Article and Find Full Text PDF

Microelectromechanical systems (MEMS), a technology that resulted from significant innovation in semiconductor fabrication, have recently been applied to the development of silicon nanopore membranes (SNM). In contrast to membranes fabricated from polymeric materials, SNM exhibit slit-shaped pores, monodisperse pore size, constant surface porosity, zero pore overlap, and sub-micron thickness. This development in membrane fabrication is applied herein for the validation of the XDLVO (extended Derjaguin, Landau, Verwey, and Overbeek) theory of membrane transport within the context of hemofiltration.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades.

View Article and Find Full Text PDF

Recent years have seen a substantial reduction of the specific energy consumption (SEC) in seawater reverse osmosis (RO) desalination due to improvements made in hydraulic energy recovery (HER) as well as RO membranes and related process technologies. Theoretically, significant potential for further reduction in energy consumption may lie in harvesting the high chemical potential contained in RO concentrate using salinity gradient power technologies. Herein, "osmotic energy recovery" (OER) is evaluated in a seawater RO plant that includes state-of-the-art RO membranes, plant designs, operating conditions, and HER technology.

View Article and Find Full Text PDF

Standing square-wave chronoamperometry (SSWCA) was applied to the analysis of the microfluid flow generated by the movement of the appendages of the Crustacea Daphnia. This novel approach provided for the first time real-time assessment and analysis of the breathing rate/fluid flow of individual organisms. An electrochemical tracer was delivered into the fluid inflow of the organism and a carbon fiber microelectrode placed in the fluid outflow's path.

View Article and Find Full Text PDF

Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.

View Article and Find Full Text PDF