Publications by authors named "Benjamin Emenike"

Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.

View Article and Find Full Text PDF

Lysine dimethylation (Kme) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme.

View Article and Find Full Text PDF

Inspired by the enzyme lysyl oxidase, which selectively converts the side chain of lysine into allysine, an aldehyde-containing post-translational modification, we report herein the first chemical method for the synthesis of allysine by selective oxidation of dimethyl lysine. This approach is highly chemoselective for dimethyl lysine on proteins. We highlight the utility of this biomimetic approach for generating aldehydes in a variety of pharmaceutically active linear and cyclic peptides at a late stage for their diversification with various affinity and fluorescent tags.

View Article and Find Full Text PDF

Protein α-N-terminal dimethylation (Nme) is an underexplored posttranslational modification (PTM) despite the increasing implications of α-N-terminal dimethylation in vital physiological and pathological processes across diverse species; thus, it is imperative to identify the sites of α-N-terminal dimethylation in the proteome. So far, only ∼300 α-N-terminal methylation sites have been discovered including mono-, di-, and tri-methylation, due to the lack of a pan-selective method for detecting α-N-terminal dimethylation. Herein, we introduce the three-component coupling reaction, oxidative nitrile thiazolidination (OxNiTha) for chemoselective modification of α-Nme to thiazolidine ring in the presence of selectfluor, sodium cyanide, and 1,2 aminothiols.

View Article and Find Full Text PDF

Nature increases the functional diversity of the proteome through posttranslational modifications (PTMs); a process that involves the proteolytic processing or catalytic attachment of diverse functional groups onto proteins. These modifications modulate a host of biological activities and responses. Consequently, anomalous PTMs often correlate to a host of diseases, hence there is a need to detect these transformations, both qualitatively and quantitatively.

View Article and Find Full Text PDF