Cytoskeletal pattern formation and structural dynamics are key to a variety of biological functions and a detailed and quantitative analysis yields insight into finely tuned and well-balanced homeostasis and potential pathological alterations. High content life cell imaging of fluorescently labeled cytoskeletal elements under physiological conditions is nowadays state-of-the-art and can record time lapse data for detailed experimental studies. However, systematic quantification of structures and in particular the dynamics (i.
View Article and Find Full Text PDFElectron-nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the [Formula: see text] in ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing.
View Article and Find Full Text PDFAnalysis of patchclamp recordings is often a challenging issue. We give practical guidance how such recordings can be analyzed using the model-free multiscale idealization methodology JSMURF, JULES, and HILDE. We provide an operational manual how to use the accompanying software available as an R-package and as a graphical user interface.
View Article and Find Full Text PDFProg Biophys Mol Biol
July 2019
Blood platelets are the key cellular players in blood clotting and thus of great biomedical importance. While spreading at the site of injury, they reorganize their cytoskeleton within minutes and assume a flat appearance. As platelets possess no nucleus, many standard methods for visualizing cytoskeletal components by means of fluorescence tags fail.
View Article and Find Full Text PDFA reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods.
View Article and Find Full Text PDF