Optical motion capture (OMC) is considered the best available method for measuring spine kinematics, yet inertial measurement units (IMU) have the potential to collect data outside the laboratory. When combined with musculoskeletal modeling, IMU technology may be used to estimate spinal loads in real-world settings. To date, IMUs have not been validated for estimates of spinal movement and loading during both walking and running.
View Article and Find Full Text PDFWe examined the effects of vertical load placement on the metabolic cost of walking. Twelve healthy participants walked on a treadmill with 13.8 and 23.
View Article and Find Full Text PDFHumans differ from African great apes in numerous respects, but the chief initial difference setting hominins on their unique evolutionary trajectory was habitual bipedalism. The two most widely supported selective forces for this adaptation are increased efficiency of locomotion and improved ability to feed in upright contexts. By 4 million years ago, hominins had evolved the ability to walk long distances but extreme selection for endurance capabilities likely occurred later in the genus Homo to help them forage, power scavenge and persistence hunt in hot, arid conditions.
View Article and Find Full Text PDFObjectives: High trunk muscle endurance, strength, and moderate flexibility reportedly help maintain musculoskeletal health, but there is evidence for tradeoffs among these variables as well as sex differences in trunk muscle endurance and strength. To test if these observations extend similarly to both men and women in nonindustrial and industrial environments, we investigated intra-individual associations and group and sex differences in trunk muscle endurance, strength, and flexibility among 74 (35 F, 39 M; age range: 18-61 years) adults from the same Kalenjin-speaking population in western Kenya. We specifically compared men and women from an urban community with professions that do not involve manual labor with rural subsistence farmers, including women who frequently carry heavy loads.
View Article and Find Full Text PDFLike other animals, humans use their legs like springs to save energy during running. One potential contributor to leg stiffness in humans is the longitudinal arch (LA) of the foot. Studies of cadaveric feet have demonstrated that the LA can function like a spring, but it is unknown whether humans can adjust LA stiffness in coordination with more proximal joints to help control leg stiffness during running.
View Article and Find Full Text PDF