The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate 'defect equilibrium engineering'.
View Article and Find Full Text PDFProperty coupling at interfaces between active materials is a rich source of functionality, if defect densities are low, interfaces are smooth and the microstructure is featureless. Conventional synthesis techniques generally fail to achieve this when materials have highly dissimilar structure, symmetry and bond type-precisely when the potential for property engineering is most pronounced. Here we present a general synthesis methodology, involving systematic control of the chemical boundary conditions in situ, by which the crystal habit, and thus growth mode, can be actively engineered.
View Article and Find Full Text PDF