Publications by authors named "Benjamin Dwyer"

Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer.

View Article and Find Full Text PDF

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state.

View Article and Find Full Text PDF
Article Synopsis
  • Liver transplantation is the best way to treat patients with severe liver disease, but problems can happen after the surgery, like damage to bile ducts that can lead to losing the new liver.
  • Scientists studied how keeping livers cold before surgery affects liver cells and found that cold storage can hurt the cells and stop them from healing properly.
  • They discovered a specific receptor in the liver cells that can help with cell growth and lessen damage, and using certain treatments before and during liver storage can help keep the liver healthier for the transplant.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have isolated human biliary epithelial cells (hBECs) from livers not used for transplants to explore new treatment options.
  • * In mouse models, hBECs showed promise by improving biliary structure and function, suggesting they could be a viable alternative to liver transplants for treating biliary diseases.
View Article and Find Full Text PDF

Homes equipped with ambient sensors can measure physiological signals correlated with the resident's health without requiring a wearable device. Gait characteristics may reveal physical imbalances or recognize changes in cognitive health. In this paper, we use the physical interactions with floor to both localize the resident and monitor their gait.

View Article and Find Full Text PDF

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver.

View Article and Find Full Text PDF

Background & Aims: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA.

View Article and Find Full Text PDF

Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks.

View Article and Find Full Text PDF

Background & Aim: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI).

View Article and Find Full Text PDF

Therapies to reduce liver fibrosis and stimulate organ regeneration are urgently needed. We conducted a first-in-human, phase 1 dose-escalation trial of autologous macrophage therapy in nine adults with cirrhosis and a Model for End-Stage Liver Disease (MELD) score of 10-16 (ISRCTN 10368050). Groups of three participants received a single peripheral infusion of 10, 10 or up to 10 cells.

View Article and Find Full Text PDF

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease.

View Article and Find Full Text PDF

The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques.

View Article and Find Full Text PDF

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired-a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes.

View Article and Find Full Text PDF

Background Aims: Autologous macrophage therapy represents a potentially significant therapeutic advance for the treatment of severe progressive liver cirrhosis. Administration of macrophages has been shown to reduce inflammation and drive fibrotic scar breakdown and tissue repair in relevant models. This therapeutic approach is being assessed for safety and feasibility in a first-in-human trial (MAcrophages Therapy for liver CirrHosis [MATCH] trial).

View Article and Find Full Text PDF

The role of the liver and the endocrine pancreas in development of hyperinsulinemia in different types of obesity remains unclear. Sedentary rats (160 g) were fed a low-fat-diet (LFD, chow 13% kcal fat), high-fat-diet (HFD, 35% fat), or HFD+ 30% ethanol+ 30% fructose (HF-EFr, 22% fat). Overnight-fasted rats were culled after one, four or eight weeks.

View Article and Find Full Text PDF

The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy.

View Article and Find Full Text PDF

Background & Aims: The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects.

Methods: Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents.

View Article and Find Full Text PDF

Complications of end-stage chronic liver disease signify a major cause of mortality worldwide. Irrespective of the underlying cause, most chronic liver diseases are characterized by hepatocellular necrosis, inflammation, fibrosis, and proliferation of liver progenitor cells or ductular reactions. Vast differences exist between experimental models that mimic these processes, and their identification is fundamental for translational research.

View Article and Find Full Text PDF

Chronic liver diseases (CLD) such as hepatitis B and C virus infection, alcoholic liver disease, and non-alcoholic steatohepatitis are associated with hepatocellular necrosis, continual inflammation, and hepatic fibrosis. The induced microenvironment triggers the activation of liver-resident progenitor cells (LPCs) while hepatocyte replication is inhibited. In the early injury stages, LPCs regenerate the liver by proliferation, migration to sites of injury, and differentiation into functional biliary epithelial cells or hepatocytes.

View Article and Find Full Text PDF

Background & Aims: In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood.

View Article and Find Full Text PDF