Publications by authors named "Benjamin Dumont"

Background: Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is associated with chronic inflammation and involves two types of neutrophils: high-density neutrophils (HDNs) and low-density neutrophils (LDNs), with LDNs often increasing in various diseases and releasing inflammatory substances.
  • This study isolated and measured these neutrophil subtypes and their activities in individuals with HF, including both HFrEF and HFpEF patients, compared to healthy volunteers.
  • Results showed significantly higher counts of both HDNs and LDNs in HF patients, particularly those with HFpEF, linking LDN counts to increased inflammatory markers and the formation of neutrophil extracellular traps (NETs).
View Article and Find Full Text PDF
Article Synopsis
  • Type 2 diabetes (T2D) is linked to increased low-density neutrophils (LDNs), which contribute to inflammation by releasing inflammatory cytokines and neutrophil extracellular traps (NETs).
  • LDN counts and various inflammatory biomarkers, such as citrullinated H3 histone and myeloperoxidase, were significantly higher in T2D patients compared to healthy volunteers, indicating heightened inflammatory activity.
  • Isolated LDNs from T2D patients showed greater NET formation and adhesion capabilities on human extracellular matrix compared to those from healthy individuals, highlighting the pro-inflammatory role of LDNs in T2D.
View Article and Find Full Text PDF

Integrated crop-livestock systems (ICLS) are proposed as key solutions to the various challenges posed to present-day agriculture which must guarantee high and stable yields while minimizing its impacts on the environment. Yet the complex relationships between crops, grasslands and animals on which they rely demand careful and precise management. In this study, from a 18-year ICLS field experiment in Brazil, that consists in annual no-till soybean-pastures grazed by beef cattle, we investigated the impacts of contrasted pastures grazing intensities (defined by sward heights of 10, 20, 30 and 40 cm, plus an ungrazed treatment) on the agroecosystem productivity and soil organic carbon (SOC) under both historical and future (2040-2070, RCP8.

View Article and Find Full Text PDF

Estimation of biophysical vegetation variables is of interest for diverse applications, such as monitoring of crop growth and health or yield prediction. However, remote estimation of these variables remains challenging due to the inherent complexity of plant architecture, biology and surrounding environment, and the need for features engineering. Recent advancements in deep learning, particularly convolutional neural networks (CNN), offer promising solutions to address this challenge.

View Article and Find Full Text PDF

The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment.

View Article and Find Full Text PDF

Phosphorus deficiency induces biochemical and morphological changes which affect crop yield and production. Prompt fluorescence signal characterizes the PSII activity and electron transport from PSII to PSI, while the modulated light reflection at 820 (MR 820) nm investigates the redox state of photosystem I (PSI) and plastocyanin (PC). Therefore, combining information from modulated reflection at 820 nm with chlorophyll a fluorescence can potentially provide a more complete understanding of the photosynthetic process and integrating other plant physiological measurements may help to increase the accuracy of detecting the phosphorus deficiency in wheat leaves.

View Article and Find Full Text PDF

Primary graft dysfunction (PGD) is characterized by alveolar epithelial and vascular endothelial damage and inflammation, lung edema and hypoxemia. Up to one-third of recipients develop the most severe form of PGD (Grade 3; PGD3). Animal studies suggest that neutrophils contribute to the inflammatory process through neutrophil extracellular traps (NETs) release (NETosis).

View Article and Find Full Text PDF
Article Synopsis
  • HFpEF is linked to chronic inflammation, which may worsen in patients with type 2 diabetes due to neutrophils releasing pro-inflammatory cytokines.
  • Blood samples were taken from groups including those with diabetes, HFpEF, HFpEF with diabetes, and healthy controls to analyze cytokine levels.
  • Results showed reduced nitric oxide and increased adhesion molecules and inflammatory cytokine levels in patients with HFpEF and diabetes, indicating heightened inflammation in these groups compared to healthy individuals.
View Article and Find Full Text PDF

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change.

View Article and Find Full Text PDF

The reflectance of wheat crops provides information on their architecture or physiology. However, the methods currently used for close-range reflectance computation do not allow for the separation of the wheat canopy organs: the leaves and the ears. This study details a method to achieve high-throughput measurements of wheat reflectance at the organ scale.

View Article and Find Full Text PDF

The automatic segmentation of ears in wheat canopy images is an important step to measure ear density or extract relevant plant traits separately for the different organs. Recent deep learning algorithms appear as promising tools to accurately detect ears in a wide diversity of conditions. However, they remain complicated to implement and necessitate a huge training database.

View Article and Find Full Text PDF

The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability.

View Article and Find Full Text PDF

Aims: Heart failure with reduced ejection fraction (HFrEF) is characterized by sub-clinical inflammation. Changes in selected biomarkers of inflammation concomitant with the release of pro-inflammatory and anti-inflammatory cytokines by neutrophils have not been investigated in patients with HFrEF.

Methods And Results: Fifty-two patients, aged 68.

View Article and Find Full Text PDF

Background: Neutrophils induce the synthesis and release of angiopoietin 1 (Ang1), a cytosolic growth factor involved in angiogenesis and capable of inducing several pro-inflammatory activities in neutrophils. Neutrophils also synthesize and release neutrophil extracellular traps (NETs), comprised from decondensed nuclear DNA filaments carrying proteins such as neutrophil elastase (NE), myeloperoxidase (MPO), proteinase 3 (PR3) and calprotectin (S100A8/S100A9), which together, contribute to the innate immune response against pathogens (e.g.

View Article and Find Full Text PDF

This article presents data designed by European researchers who performed a literature review and interpreted the results to determine impact factors of many agroecological practices on a wide variety of sustainability indicators. The impact factors are represented in a matrix that connects practices to indicators. The indicators are related to environmental, economic and social sustainability of a typical European integrated crop-livestock farm.

View Article and Find Full Text PDF

Stereo vision is a 3D imaging method that allows quick measurement of plant architecture. Historically, the method has mainly been developed in controlled conditions. This study identified several challenges to adapt the method to natural field conditions and propose solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat grain protein concentration is crucial for nutrition but often overlooked in crop production improvements.
  • A study using a multi-model ensemble predicts that while increased CO levels might initially boost wheat yields, rising temperatures and altered rainfall patterns will likely negate these benefits, especially in low-rainfall areas.
  • Adapting wheat genotypes to warmer conditions could increase overall yields but may lead to a decrease in grain protein concentration, highlighting the challenge of balancing quantity and quality in wheat production amid climate change.
View Article and Find Full Text PDF

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.

View Article and Find Full Text PDF

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors.

View Article and Find Full Text PDF

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions.

View Article and Find Full Text PDF
Article Synopsis
  • This article discusses significant findings related to plant biology published in the journal Nature Plants.
  • The authors present new research that sheds light on various aspects of plant functions and their ecological impacts.
  • The study emphasizes the importance of understanding plant mechanisms to address environmental challenges and improve agricultural practices.
View Article and Find Full Text PDF

Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C.

View Article and Find Full Text PDF

Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer's field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0).

View Article and Find Full Text PDF

Agronomic input and management practices have traditionally been applied uniformly on agricultural fields despite the presence of spatial variability of soil properties and landscape position. When spatial variability is ignored, uniform agronomic management can be both economically and environmentally inefficient. The objectives of this study were to: i) identify optimal N fertilizer rates using an integrated spatio-temporal analysis of yield and site-specific N rate response; ii) test the sensitivity of site specific N management to nitrate leaching in response to different N rates; and iii) demonstrate the environmental benefits of variable rate N fertilizer in a Nitrate Vulnerable Zone.

View Article and Find Full Text PDF