Publications by authors named "Benjamin Driquez"

Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization.

View Article and Find Full Text PDF

The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving β-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of β-catenin-tyrosine-667.

View Article and Find Full Text PDF

Embryonic differentiation and morphogenesis require the coordination of the cascades of gene product expression with the morphogenetic sequence of development. The influence of mechanical deformations driven by morphogenetic movements on biochemical activities was recently revealed by the existence of mechanotransduction processes in development, involving both gene transcription and protein behaviour. In the early Drosophila embryo, apical stabilization of Myosin-II leading to mesoderm invagination at the onset of gastrulation was proposed to be triggered in response to the activation of the Fog mechanotransduction pathway by the Snail-dependent active mechanical oscillations of cell apex sizes.

View Article and Find Full Text PDF