Publications by authors named "Benjamin D Weil"

Background: MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution.

View Article and Find Full Text PDF

There is growing interest in the regenerative potential of adipose-derived stem cells (ADSCs) for wound healing applications. ADSCs have been shown to promote revascularization, activate local stem cell niches, reduce oxidative stress, and modulate immune responses. Combined with the fact that they can be harvested in large numbers with minimal donor site morbidity, ADSC products represent promising regenerative cell therapies.

View Article and Find Full Text PDF

Aim: To present an integrated techno-economic analysis assessing the feasibility of affinity purification technologies using the manufacture of induced pluripotent stem cell-derived progenitor photoreceptors for retinal dystrophies as a case study.

Materials & Methods: Sort purity, progenitor yield and viable cell recovery were investigated for three cell sorting techniques: fluorescent-activated cell sorting (FACS); magnetic-activated cell sorting (MACS); and a novel technology SpheriTech beads. Experimentally derived metrics were incorporated into an advanced bioprocess economics tool to determine cost of goods per dose for each technology.

View Article and Find Full Text PDF

Silicon has been driving the great success of semiconductor industry, and emerging forms of silicon have generated new opportunities in electronics, biotechnology, and energy applications. Here we demonstrate large-area free-standing ultrathin single-crystalline Si at the wafer scale as new Si materials with processability. We fabricated them by KOH etching of the Si wafer and show their uniform thickness from 10 to sub-2 μm.

View Article and Find Full Text PDF

Solution-based deposition techniques are widely considered to be a route to low-cost, high-throughput photovoltaic device fabrication. In this report, we establish a methodology for a highly scalable deposition process and report the synthesis of an air-stable, vulcanized ink from commercially available precursors. Using our air-stable ink rolling (AIR) process, we can make solar cells with an absorber layer that is flat, contaminant-free, and composed of large-grained CuInS(2).

View Article and Find Full Text PDF

We synthesized wurtzite CuInS(2) nanorods (NRs) by colloidal solution-phase growth. We discovered that the growth process starts with nucleation of Cu(2)S nanodisks, followed by epitaxial overgrowth of CuInS(2) NRs onto only one face of Cu(2)S nanodisks, resulting in biphasic Cu(2)S-CISu heterostructured NRs. The phase transformation of biphasic Cu(2)S-CuInS(2) into monophasic CuInS(2) NRs occurred with growth progression.

View Article and Find Full Text PDF