Publications by authors named "Benjamin D Robertson"

We present a novel biorobotic framework comprised of a biological muscle-tendon unit (MTU) mechanically coupled to a feedback controlled robotic environment simulation that mimics in vivo inertial/gravitational loading and mechanical assistance from a parallel elastic exoskeleton. Using this system, we applied select combinations of biological muscle activation (modulated with rate-coded direct neural stimulation) and parallel elastic assistance (applied via closed-loop mechanical environment simulation) hypothesized to mimic human behavior based on previously published modeling studies. These conditions resulted in constant system-level force-length dynamics (i.

View Article and Find Full Text PDF

In terrestrial locomotion, there is a missing link between observed spring-like limb mechanics and the physiological systems driving their emergence. Previous modeling and experimental studies of bouncing gait (e.g.

View Article and Find Full Text PDF

A growing body of research on the mechanics and energetics of terrestrial locomotion has demonstrated that elastic elements acting in series with contracting muscle are critical components of sustained, stable and efficient gait. Far fewer studies have examined how the nervous system modulates muscle-tendon interaction dynamics to optimize 'tuning' or meet varying locomotor demands. To explore the fundamental neuromechanical rules that govern the interactions between series elastic elements (SEEs) and contractile elements (CEs) within a compliant muscle-tendon unit (MTU), we used a novel work loop approach that included implanted sonomicrometry crystals along muscle fascicles.

View Article and Find Full Text PDF

Development of robotic exoskeletons to assist/enhance human locomotor performance involves lengthy prototyping, testing, and analysis. This process is further convoluted by variability in limb/body morphology and preferred gait patterns between individuals. In an attempt to expedite this process, and establish a physiological basis for actuator prescription, we developed a simple, predictive model of human neuromechanical adaptation to a passive elastic exoskeleton applied at the ankle joint during a functional task.

View Article and Find Full Text PDF

We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping).

View Article and Find Full Text PDF

Inspired by elastic energy storage and return in tendons of human leg muscle-tendon units (MTU), exoskeletons often place a spring in parallel with an MTU to assist the MTU. However, this might perturb the normally efficient MTU mechanics and actually increase active muscle mechanical work. This study tested the effects of elastic parallel assistance on MTU mechanics.

View Article and Find Full Text PDF

The occurrence of status epilepticus (SE) is considered the main cause of brain lesions and morphological alterations, such as hippocampal neuron loss, that result in chronic epilepsy. Previous work demonstrated the convulsive and widespread neuropathological effects of soman, an organophosphorus compound that causes SE and severe recurrent seizures as a result of exposure. Seizures begin rapidly after exposure, can continue for hours, and contribute to prolonged physical incapacitation of the victim.

View Article and Find Full Text PDF

Robotic assistance for rehabilitation and enhancement of human locomotion has become a major goal of biomedical engineers in recent years. While significant progress to this end has been made in the fields of neural interfacing and control systems, little has been done to examine the effects of mechanical assistance on the biomechanics of underlying muscle-tendon systems. Here, we model the effects of mechanical assistance via a passive spring acting in parallel with the triceps surae-Achilles tendon complex during cyclic hopping in humans.

View Article and Find Full Text PDF