Carboxysomes are bacterial microcompartments, whose structural features enable the encapsulated Rubisco holoenzyme to operate in a high-CO environment. Consequently, Rubiscos housed within these compartments possess higher catalytic turnover rates relative to their plant counterparts. This particular enzymatic property has made the carboxysome, along with associated transporters, an attractive prospect to incorporate into plant chloroplasts to increase future crop yields.
View Article and Find Full Text PDFA long-term strategy to enhance global crop photosynthesis and yield involves the introduction of cyanobacterial CO-concentrating mechanisms (CCMs) into plant chloroplasts. Cyanobacterial CCMs enable relatively rapid CO fixation by elevating intracellular inorganic carbon as bicarbonate, then concentrating it as CO around the enzyme Rubisco in specialized protein micro-compartments called carboxysomes. To date, chloroplastic expression of carboxysomes has been elusive, requiring coordinated expression of almost a dozen proteins.
View Article and Find Full Text PDFThis article comments on: 2017. Sorting of SEC translocase SCY components to different membranes in chloroplasts. Journal of Experimental Botany 5029–5043.
View Article and Find Full Text PDFGrowth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates.
View Article and Find Full Text PDFGlobal population growth is projected to outpace plant-breeding improvements in major crop yields within decades. To ensure future food security, multiple creative efforts seek to overcome limitations to crop yield. Perhaps the greatest limitation to increased crop yield is photosynthetic inefficiency, particularly in C3 crop plants.
View Article and Find Full Text PDFCyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
February 2014
Carboxysomes are extraordinarily efficient proteinaceous microcompartments that encapsulate the primary CO2-fixing enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) in cyanobacteria and some proteobacteria. These microbodies form part of a CO2-concentrating mechanism (CCM), operating together with active CO2 and HCO3(-) uptake transporters which accumulate HCO3(-) in the cytoplasm of the cell. Cyanobacteria (also known as blue-green algae) are highly productive on a global scale, especially those species from open-ocean niches, which collectively contribute nearly 30% of global net primary fixation.
View Article and Find Full Text PDFCyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes.
View Article and Find Full Text PDFCarboxysomes, containing the cell's complement of RuBisCO surrounded by a specialized protein shell, are a central component of the cyanobacterial CO(2)-concentrating mechanism. The ratio of two forms of the β-carboxysomal protein CcmM (M58 and M35) may affect the carboxysomal carbonic anhydrase (CcaA) content. We have over-expressed both M35 and M58 in the β-cyanobacterium Synechococcus PCC7942.
View Article and Find Full Text PDFThe cyanobacterial CO(2)-concentrating mechanism (CCM) is an effective adaptation that increases the carbon dioxide (CO(2)) concentration around the primary photosynthetic enzyme Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO). α-Cyanobacteria (those containing Form1-A RuBisCO within cso-type α-carboxysomes) have a limited CCM composed of a small number of Ci-transporters whereas β-cyanobacteria (those species containing Form-1B RuBisCO within ccm-type β-carboxysomes) exhibit a more diverse CCM with a greater variety in Ci-transporter complement and regulation. In the coastal species Synechococcus sp.
View Article and Find Full Text PDF