CRISPR gene editing and control systems continue to emerge and inspire novel research and clinical applications. Advances in CRISPR performance such as optimizing the duration of activity in cells, tissues, and organisms, as well as limiting off-target activities, have been extremely important for expanding the utility of CRISPR-based systems. By investigating the effects of various chemical modifications in guide RNAs (gRNAs) at defined positions and combinations, we find that 2'--methyl-3'-phosphonoacetate (MP) modifications can be substantially more effective than 2'--methyl-3'-phosphorothioate (MS) modifications at the 3' ends of single-guide RNAs (sgRNAs) to promote high editing yields, in some instances showing an order of magnitude higher editing yield in human cells.
View Article and Find Full Text PDFCRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes.
View Article and Find Full Text PDFCRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery.
View Article and Find Full Text PDFRNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies.
View Article and Find Full Text PDFRNA sequences having up to three consecutive internal amide linkages were synthesized and studied using UV and NMR spectroscopy. The amide modifications did not interfere with normal base-pairing and A-type RNA conformation. Three consecutive amides were well tolerated in the passenger strand of siRNA and caused little change in RNAi activity.
View Article and Find Full Text PDF