Publications by authors named "Benjamin D G Chandran"

The dissipation of turbulence in astrophysical systems is fundamental to energy transfer and heating in environments ranging from the solar wind and corona to accretion disks and the intracluster medium. Although turbulent dissipation is relatively well understood in fluid dynamics, astrophysical plasmas often exhibit exotic behaviour, arising from the lack of interparticle collisions, which complicates turbulent dissipation and heating in these systems. Recent observations by NASA's Parker Solar Probe mission in the inner heliosphere have shed new light on the role of ion cyclotron resonance as a potential candidate for turbulent dissipation and plasma heating.

View Article and Find Full Text PDF

The dissipation of magnetized turbulence is an important paradigm for describing heating and energy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measurements. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance.

View Article and Find Full Text PDF

A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms.

View Article and Find Full Text PDF

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U.

View Article and Find Full Text PDF

Stochastic heating refers to an increase in the average magnetic moment of charged particles interacting with electromagnetic fluctuations whose frequencies are much smaller than the particles' cyclotron frequencies. This type of heating arises when the amplitude of the gyroscale fluctuations exceeds a certain threshold, causing particle orbits in the plane perpendicular to the magnetic field to become stochastic rather than nearly periodic. We consider the stochastic heating of protons by Alfvén-wave (AW) and kinetic-Alfvén-wave (KAW) turbulence, which may make an important contribution to the heating of the solar wind.

View Article and Find Full Text PDF

In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy ≫ , where and are the frequency () spectra of Alfvén waves propagating in opposite directions along the magnetic field lines.

View Article and Find Full Text PDF

In this Letter, weak-turbulence theory is used to investigate interactions among Alfvén waves and fast and slow magnetosonic waves in collisionless low-beta plasmas. The wave kinetic equations are derived from the equations of magnetohydrodynamics, and extra terms are then added to model collisionless damping. These equations are used to provide a quantitative description of a variety of nonlinear processes, including parallel and perpendicular energy cascade, energy transfer between wave types, "phase mixing," and the generation of backscattered Alfvén waves.

View Article and Find Full Text PDF

This Letter presents a calculation of the power spectra of weakly turbulent Alfvén waves and fast magnetosonic waves ("fast waves") in low- plasmas. It is shown that three-wave interactions transfer energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfvén waves. High-frequency waves produced by MHD turbulence are a promising explanation for the anisotropic heating of minor ions in the solar corona.

View Article and Find Full Text PDF

Using direct numerical simulations, we calculate the rate of divergence of neighboring magnetic-field lines in different types of strong magnetohydrodynamic turbulence. In the static-magnetic-field approximation, our results imply that tangled magnetic fields in galaxy clusters reduce the electron diffusion coefficient and thermal conductivity by a factor of approximately 5-10, relative to their values in a nonmagnetized plasma.

View Article and Find Full Text PDF