Publications by authors named "Benjamin C Olbricht"

Nano-antennas are replicas of antennas that operate at radio-frequencies, but with considerably smaller dimensions when compared with their radio frequency counterparts. Noble metals based nano-antennas have the ability to enhance photoinduced phenomena such as localized electric fields, therefore-they have been used in various applications ranging from optical sensing and imaging to performance improvement of solar cells. However, such nano-structures can be damaged in high power applications such as heat resisted magnetic recording, solar thermo-photovoltaics and nano-scale heat transfer systems.

View Article and Find Full Text PDF

Magnesium diboride (MgB) is a well-known superconductor at temperatures below 39 K. At higher temperatures, it behaves as a lossy material. In this paper, we examine the performance of MgB nano-particles as saturable absorber in a ytterbium-doped fiber ring laser at room temperature: we show that the nano-particles can produce pulses between 200 and 1700 ns.

View Article and Find Full Text PDF

Organic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, , where β is the major Euler angle between the main axis of the chromophore and the poling field which imposes the acentric order. The acentric order parameter, which is difficult to measure directly, is related to the centrosymmetric order parameter, defined as = ½(3-1), through the underlying statistical distribution.

View Article and Find Full Text PDF

Identification of electronic intermolecular electrostatic interactions that can significantly enhance poling-induced order is important to the advancement of the field of organic electro-optics. Here, we demonstrate an example of such improvement achieved through exploitation of the interaction of coumarin pendant groups in chromophore-containing macromolecules. Acentric order enhancement is explained in terms of lattice-symmetry effects, where constraint of orientational degrees of freedom alters the relationship between centrosymmetric and acentric order.

View Article and Find Full Text PDF

For the past three decades, a full understanding of the electro-optic (EO) effect in amorphous organic media has remained elusive. Calculating a bulk material property from fundamental molecular properties, intermolecular electrostatic forces, and field-induced net acentric dipolar order has proven to be very challenging. Moreover, there has been a gap between ab initio quantum-mechanical (QM) predictions of molecular properties and their experimental verification at the level of bulk materials and devices.

View Article and Find Full Text PDF

Two new highly hyperpolarizable chromophores, based on N,N- bis-(4-methoxyphenyl) aryl-amino donors and phenyl-trifluoromethyl-tricyanofuran (CF3-Ph-TCF) acceptor linked together via pi-conjugation through 2,5-divinylenethienyl moieties as the bridge, have been designed and synthesized successfully for the first time. The aryl moieties on the donor side of the chromophore molecules were varied as to be thiophene and 1-n-hexylpyrrole. The linear and nonlinear optical (NLO) properties of all compounds were evaluated in addition to recording relevant thermal and electrochemical data.

View Article and Find Full Text PDF

A novel technique for the fabrication of polarization selective electro-optic polymer waveguide devices with direct electron beam writing was described. Birefringence induced by the electric field poling in the electro-optic polymer film was erased in the electron beam exposed regions. The formed waveguides had stronger confinement for the light polarized along the poling direction.

View Article and Find Full Text PDF

Electro-optic polymer waveguides in electron beam sensitive polymethyl methacrylate (PMMA) polymer matrix doped with organic nonlinear chromophores could be directly patterned by electron beam exposure with high resolution and smoothness. The polymer in the exposed regions was removed with standard electron beam resist developer and without damaging the chromophore containing polymer waveguides. Feature sizes on the order of 100 nm could be clearly resolved.

View Article and Find Full Text PDF

Extensive experimental and theoretical study suggests that interchromophore electrostatic interactions are among the most severe impediments to the induction and stability of large electro-optic coefficients in electric-field-poled organic materials. In this report, multichromophore-containing dendritic materials have been investigated as a means to minimize unwanted attenuation of nonlinear optical (electro-optic) activity at high chromophore loading. The dendritic molecular architectures employed were designed to provide optimized molecular scaffolding for electric-field-induced molecular reorientation.

View Article and Find Full Text PDF

Time- and frequency-resolved pump-probe measurements on NeBr2 have been performed to better characterize its fragmentation dynamics on the B electronic state for vibrational levels in the energy region of the transition from direct vibrational predissociation to intramolecular vibrational relaxation dynamics. Above nu'=20 of the Br2 stretching mode, it was observed that the dependence of lifetime on the vibrational quantum number deviates from the energy-gap law by leveling off in the range of 10 psE transitions of the complex.

View Article and Find Full Text PDF