Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy.
View Article and Find Full Text PDFBackground: Segmental large volume bone loss resulting from fracture or osseous neoplasia is a major challenge to orthopedic surgeons and there is an ongoing quest to identify treatments that optimize healing. To advance treatment, large animal translational models-such as the ovine critical-sized tibia defect model-are instrumental for testing of novel scaffolds for bone regeneration. However, little standardization in the implants utilized for defect stabilization has been determined and current commercially available implants may be inadequate to replicate the strength of the native tibia.
View Article and Find Full Text PDFPurpose: To perform a preclinical histologic assessment of a biphasic acellular interpositional cancellous allograft in an ovine model of rotator cuff repair (RCR) designed to better understand its safety profile and effects on tendon healing after RCR.
Methods: Thirty skeletally mature sheep with clinically normal shoulders with an artificially created degenerative infraspinatus tendon tear were randomized to control and treatment groups. Animals were euthanized at 3 weeks, 6 weeks, and 12 weeks.
Study Objective: To minimize the risk of cervical spinal cord injury in patients who have cervical spine pathology, minimizing cervical spine motion during laryngoscopy and tracheal intubation is commonly recommended. However, clinicians may better aim to reduce cervical spinal cord strain during airway management of their patients. The aim of this study was to predict laryngoscope force characteristics (location, magnitude, and direction) that would minimize cervical spine motions and cord strains.
View Article and Find Full Text PDFBackground: Because intubation-mediated cervical spine and spinal cord injury are likely determined by intubation force magnitude, understanding the determinants of intubation force magnitude is clinically relevant. With direct (Macintosh) laryngoscopy, when glottic view is less favorable, anesthesiologists apply greater force. We hypothesized that, when compared with direct (Macintosh) laryngoscopy, intubation force with an optical indirect laryngoscope (Airtraq) would be less dependent on glottic visualization.
View Article and Find Full Text PDFA tibial tuberosity advancement (TTA), used to treat lameness in the canine stifle, provides a framework to investigate implant performance within an uneven loading environment due to the dominating patellar tendon. The purpose of this study was to reassess how we design orthopaedic implants in a load-bearing model to investigate potential for improved osseointegration capacity of fully-scaffolded mechanically-matched additive manufactured (AM) implants. While the mechanobiological nature of bone is well known, we have identified a lower limit in the literature where investigation into exceedingly soft scaffolds relative to trabecular bone ceases due to the trade-off in mechanical strength.
View Article and Find Full Text PDFObjective: Shoulder pain is commonly attributed to rotator cuff injury or osteoarthritis. Ovine translational models are used to investigate novel treatments aimed at remedying these conditions to prevent articular cartilage degeneration and subsequent joint degradation. However, topographical properties of articular cartilage in the ovine shoulder are undefined.
View Article and Find Full Text PDFTrauma to the soft tissues of the ankle joint distal syndesmosis often leads to syndesmotic instability, resulting in undesired movement of the talus, abnormal pressure distributions, and ultimately arthritis if deterioration progresses without treatment. Historically, syndesmotic injuries have been repaired by placing a screw across the distal syndesmosis to provide rigid fixation to facilitate ligament repair. While rigid syndesmotic screw fixation immobilizes the ligamentous injury between the tibia and fibula to promote healing, the same screws inhibit normal physiologic movement and dorsiflexion.
View Article and Find Full Text PDFBackground: In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur?
Methods: This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression).
Background Context: While the clinical effectiveness of recombinant human Platelet Derived Growth Factor-B chain homodimer combined with collagen and β-tricalcium phosphate (rhPDGF-BB + collagen/β-TCP) treatment for indications involving hindfoot and ankle is well-established, it is not approved for use in spinal interbody fusion, and the use of autograft remains the gold standard.
Purpose: The purpose of this study was to compare the effects of rhPDGF-BB + collagen/β-TCP treatment on lumbar spine interbody fusion in an ovine model to those of autograft bone and collagen/β-TCP treatments using biomechanical, radiographic, and histological assessment techniques.
Study Design: Thirty-two skeletally mature Columbian Rambouillet sheep were used to evaluate the safety and effectiveness of rhPDGF-BB + collagen/β-TCP matrix in a lumbar spinal fusion model.
bioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation.
View Article and Find Full Text PDFAutologous bone grafts are considered the gold standard grafting material for the treatment of nonunion, but in very large bone defects, traditional autograft alone is insufficient to induce repair. Recombinant human bone morphogenetic protein 2 (rhBMP-2) can stimulate bone regeneration and enhance the healing efficacy of bone grafts. The delivery of rhBMP-2 may even enable engineered synthetic scaffolds to be used in place of autologous bone grafts for the treatment of critical size defects, eliminating risks associated with autologous tissue harvest.
View Article and Find Full Text PDFThe knee is the most common site for translational cartilage research in sheep, though topographic features of articular cartilage across surfaces are unspecified. We aimed to characterize the mechanical, morphological, and biochemical properties of articular cartilage across ovine knee surfaces and document variations between and within surface locations. Regions of interest (ROIs) were delineated across surfaces of 10 healthy ovine knees.
View Article and Find Full Text PDFBackground Studies of head, neck, and cervical spine morphology and tissue material properties indicate that cervical spine biomechanics differ between adult males and females. These differences result in sex-specific cervical spine kinematics and injury patterns in response to standardized loading conditions. Because direct laryngoscopy and endotracheal intubation require the application of a load to the cervical spine, intubation biomechanics should be sex-specific.
View Article and Find Full Text PDFThe MRL/MpJ mice have demonstrated an enhanced tissue regeneration capacity for various tissues. In the present study, we systematically characterized bone microarchitecture and found that MRL/MpJ mice exhibit higher bone microarchitecture and strength compared to both C57BL/10J and C57BL/6J WT mice at 2, 4, and 10 months of age. The higher bone mass in MRL/MpJ mice was correlated to increased osteoblasts, decreased osteoclasts, higher cell proliferation, and bone formation, and enhanced pSMAD5 signaling earlier during postnatal development (2-month old) in the spine trabecular bone, and lower bone resorption rate at later age.
View Article and Find Full Text PDFLaryngoscopy and endotracheal intubation in patients with unstable cervical spines may cause pathological spinal motion and resultant cord injury. Cadaver and mathematical (finite element) models of a type II odontoid fracture predict C1-C2 motions during intubation to be of low magnitude, especially with the use of a low-force videolaryngoscope. Using continuous fluoroscopy, we recorded C1-C2 motion during C-MAC D videolaryngoscopy and intubation in 2 patients with type II odontoid fractures.
View Article and Find Full Text PDFOBJECTIVE Because of limitations inherent to cadaver models of endotracheal intubation, the authors' group developed a finite element (FE) model of the human cervical spine and spinal cord. Their aims were to 1) compare FE model predictions of intervertebral motion during intubation with intervertebral motion measured in patients with intact cervical spines and in cadavers with spine injuries at C-2 and C3-4 and 2) estimate spinal cord strains during intubation under these conditions. METHODS The FE model was designed to replicate the properties of an intact (stable) spine in patients, C-2 injury (Type II odontoid fracture), and a severe C3-4 distractive-flexion injury from prior cadaver studies.
View Article and Find Full Text PDFThe use of shock wave therapy (SWT) and low-intensity pulsed ultrasound (LIPUS) as countermeasures to the inhibited fracture healing experienced during mechanical unloading was investigated by administering treatment to the fracture sites of mature, female, Rambouillet Columbian ewes exposed to partial mechanical unloading or full gravitational loading. The amount of fracture healing experienced by the treatment groups was compared to controls in which identical surgical and testing protocols were administered except for SWT or LIPUS treatment. All groups were euthanized after a 28-day healing period.
View Article and Find Full Text PDFThe literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.
View Article and Find Full Text PDFSheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces.
View Article and Find Full Text PDFThe reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone.
View Article and Find Full Text PDFMicrogravity and its inherent reduction in body-weight associated mechanical loading encountered during spaceflight have been shown to produce deleterious effects on important human physiological processes. Rodent hindlimb unloading is the most widely-used ground-based microgravity model. Unfortunately, results from these studies are difficult to translate to the human condition due to major anatomic and physiologic differences between the two species such as bone microarchitecture and healing rates.
View Article and Find Full Text PDFCurrent finite element modeling techniques utilize geometrically inaccurate cartilage distribution representations in the lumbar spine. We hypothesize that this shortcoming severely limits the predictive fidelity of these simulations. Specifically, it is unclear how these anatomically inaccurate cartilage representations alter range of motion and facet contact predictions.
View Article and Find Full Text PDF