Publications by authors named "Benjamin C Ede"

Treating refractory pediatric acute lymphoblastic leukemia (ALL) remains a challenge despite impressive remission rates (>90%) achieved in the last decade. The use of innovative immunotherapeutic approaches such as anti-CD19 chimeric antigen receptor T cells does not ensure durable remissions, because leukemia-propagating cells (LPCs) that lack expression of CD19 can cause relapse, which signifies the need to identify new markers of ALL. Here we investigated expression of CD58, CD97, and CD200, which were previously shown to be overexpressed in B-cell precursor ALL (BCP-ALL) in CD34+/CD19+, CD34+/CD19-, CD34-/CD19+, and CD34-/CD19- LPCs, to assess their potential as therapeutic targets.

View Article and Find Full Text PDF

Dexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo.

View Article and Find Full Text PDF

Relapse of paediatric acute lymphoblastic leukaemia (ALL) may occur due to persistence of resistant cells with leukaemia-propagating ability (LPC). In leukaemia, the balance of B-cell lymphoma-2 (BCL-2) family proteins is disrupted, promoting survival of malignant cells and possibly LPC. A direct comparison of BCL-2 inhibitors, navitoclax and venetoclax, was undertaken on LPC subpopulations from B-cell precursor (BCP) and T-cell ALL (T-ALL) cases in vitro and in vivo.

View Article and Find Full Text PDF

The stabilization and transport of low-solubility drugs, by encapsulation in nanoscopic delivery vectors (nanovectors), is a key paradigm in nanomedicine. However, the problems of carrier toxicity, specificity, and producibility create a bottleneck in the development of new nanomedical technologies. Copolymeric nanoparticles are an excellent platform for nanovector engineering due to their structural versatility; however, conventional fabrication processes rely upon harmful chemicals that necessitate purification.

View Article and Find Full Text PDF

Current therapies for childhood T-cell acute lymphoblastic leukemia have increased survival rates to above 85% in developed countries. Unfortunately, some patients fail to respond to therapy and many suffer from serious side effects, highlighting the need to investigate other agents to treat this disease. Parthenolide, a nuclear factor kappa (κ)B inhibitor and reactive oxygen species inducer, has been shown to have excellent anti-cancer activity in pediatric leukemia xenografts, with minimal effects on normal hemopoietic cells.

View Article and Find Full Text PDF

The chemotherapeutic Parthenolide is an exciting new candidate for the treatment of acute lymphoblastic leukemia, but like many other small-molecule drugs, it has low aqueous solubility. As a consequence, Parthenolide can only be administered clinically in the presence of harmful cosolvents. Accordingly, we describe the synthesis, characterization, and testing of a range of biocompatible triblock copolymer micelles as particle-based delivery vectors for the hydrophobic drug Parthenolide.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: