Microbial regrowth during drinking water distribution can result in a variety of problems such as a deviating taste and odor, and may even pose a risk to public health. Frequent monitoring is essential to anticipate events of biological instability, and relevant microbial parameters for operational control of biostability of drinking water should be developed. Here, online flow cytometry and derived biological metrics were used to assess the biological stability of a full-scale drinking water tower during normal and disturbed flow regime.
View Article and Find Full Text PDFIsogenic bacterial populations are known to exhibit phenotypic heterogeneity at the single-cell level. Because of difficulties in assessing the phenotypic heterogeneity of a single taxon in a mixed community, the importance of this deeper level of organization remains relatively unknown for natural communities. In this study, we have used membrane-based microcosms that allow the probing of the phenotypic heterogeneity of a single taxon while interacting with a synthetic or natural community.
View Article and Find Full Text PDFDetecting disturbances in microbial communities is an important aspect of managing natural and engineered microbial communities. Here, we implemented a custom-built continuous staining device in combination with real-time flow cytometry (RT-FCM) data acquisition, which, combined with advanced FCM fingerprinting methods, presents a powerful new approach to track and quantify disturbances in aquatic microbial communities. Through this new approach we were able to resolve various natural community and single-species microbial contaminations in a flow-through drinking water reactor.
View Article and Find Full Text PDFRaman spectroscopy has gained relevance in single-cell microbiology for its ability to detect bacterial (sub)populations in a non-destructive and label-free way. However, the Raman spectrum of a bacterium can be heavily affected by abiotic factors, which may influence the interpretation of experimental results. Additionally, there is no publicly available standard for the annotation of metadata describing sample preparation and acquisition of Raman spectra.
View Article and Find Full Text PDFThe analysis of microbial populations is fundamental, not only for developing a deeper understanding of microbial communities but also for their engineering in biotechnological applications. Many methods have been developed to study their characteristics and over the last few decades, molecular analysis tools, such as DNA sequencing, have been used with considerable success to identify the composition of microbial populations. Recently, flow cytometric fingerprinting is emerging as a promising and powerful method to analyze bacterial populations.
View Article and Find Full Text PDFRapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g.
View Article and Find Full Text PDFDrinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2016
Flow cytometry is a rapid and quantitative method to determine bacterial viability. Although different stains can be used to establish viability, staining protocols are inconsistent and lack a general optimization approach. Very few "true" multicolor protocols, where dyes are combined in one sample, have been developed for microbiological applications.
View Article and Find Full Text PDFThe cell nucleus is structurally and functionally organized by lamins, intermediate filament proteins that form the nuclear lamina. Point mutations in genes that encode a specific subset of lamins, the A-type lamins, cause a spectrum of diseases termed laminopathies. Recent evidence points to a role for A-type lamins in intracellular redox homeostasis.
View Article and Find Full Text PDFA novel artificial sweat composition, Skin Community Interaction simulation, designed to mimic the human axillary sweat, was compared to other artificial sweat compositions. Axillary microbiota grown in the novel composition closely resembled the original community. Volatile organic compound analysis showed good correlations with in vivo axillary (mal)odor components.
View Article and Find Full Text PDF