The impact of the immersion in water on the morphology and the thermomechanical properties of a biocomposite made of a matrix of poly (lactic acid) (PLA) modified with an ethylene acrylate toughening agent, and reinforced with miscanthus fibers, has been investigated. Whereas no evidence of hydrolytic degradation has been found, the mechanical properties of the biocomposite have been weakened by the immersion. Scanning electron microscopy (SEM) pictures reveal that the water-induced degradation is mainly driven by the cracking of the fiber/matrix interface, suggesting that the cohesiveness is a preponderant factor to consider for the control of the biocomposite decomposition in aqueous environments.
View Article and Find Full Text PDFThe dehydration behaviour of alpha,alpha-trehalose (alpha-D-glucopyranosyl alpha-D-glucopyranoside) dihydrate single crystals is investigated by thermomicroscopy, Raman microscopy, and differential scanning calorimetry. The results show at a given stage the simultaneous presence of two polymorphic forms, amorphous material, and movement of a fluid phase. The study also underlines that the characterization of the average phase by conventional XRPD and DSC techniques is not sufficient to describe the dehydration mechanisms of alpha,alpha-trehalose particles.
View Article and Find Full Text PDF