Publications by authors named "Benjamin Baugher"

A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico.

View Article and Find Full Text PDF

Background: In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.

View Article and Find Full Text PDF

Influenza is a highly contagious disease that causes seasonal epidemics with significant morbidity and mortality. The ability to predict influenza peak several weeks in advance would allow for timely preventive public health planning and interventions to be used to mitigate these outbreaks. Because influenza may also impact the operational readiness of active duty personnel, the US military places a high priority on surveillance and preparedness for seasonal outbreaks.

View Article and Find Full Text PDF

Background: Malaria is the world's most prevalent vector-borne disease. Accurate prediction of malaria outbreaks may lead to public health interventions that mitigate disease morbidity and mortality.

Methods: We describe an application of a method for creating prediction models utilizing Fuzzy Association Rule Mining to extract relationships between epidemiological, meteorological, climatic, and socio-economic data from Korea.

View Article and Find Full Text PDF

Background: Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines.

Methods: Model inputs were chosen based on studies indicating variables that may impact dengue incidence.

View Article and Find Full Text PDF

Background: Mosaic somatic alterations are present in all multi-cellular organisms, but the physiological effects of low-level mosaicism are largely unknown. Most mosaic alterations remain undetectable with current analytical approaches, although the presence of such alterations is increasingly implicated as causative for disease.

Results: Here, we present the Parent-of-Origin-based Detection (POD) method for chromosomal abnormality detection in trio-based SNP microarray data.

View Article and Find Full Text PDF