Publications by authors named "Benjamin B Minkoff"

Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.

View Article and Find Full Text PDF

Premise: A multi-omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylous Turnera subulata (Sm.) as an exploratory method to identify genes for future empirical research.

Methods: Mass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L- and S-morphs.

View Article and Find Full Text PDF

Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages.

View Article and Find Full Text PDF

Hydrophobic microdomains, also known as hydrophobic patches, are essential for many important biological functions of water-soluble proteins. These include ligand or substrate binding, protein-protein interactions, proper folding after translation, and aggregation during denaturation. Unlike transmembrane domains, which are easily recognized from stretches of contiguous hydrophobic sidechains in amino acids via primary protein sequence, these three-dimensional hydrophobic patches cannot be easily predicted.

View Article and Find Full Text PDF

We have developed a method for complete dissolution of whole eggs in formic acid that provides a new approach to analyzing egg biomolecules. As expected from prior work with extracted lipids, phosphatidylcholine represents the most abundant P NMR signal. A simplified methanol/chloroform partitioning method for separating the dissolved egg solution into metabolites, lipids and protein was performed and after ultra-high mass resolution and tandem MS fragmentation analyses several phosphatidylcholine molecules containing different fatty acid chain lengths as well as number and position of double bonds was detected.

View Article and Find Full Text PDF

Over the past two decades, mass spectrometric (MS)-based proteomics technologies have facilitated the study of signaling pathways throughout biology. Nowhere is this needed more than in plants, where an evolutionary history of genome duplications has resulted in large gene families involved in posttranslational modifications and regulatory pathways. For example, at least 5% of the Arabidopsis thaliana genome (ca.

View Article and Find Full Text PDF

Oxidative proteome damage has been implicated as a major contributor to cell death and aging. Protein damage and aging has been a particular theme of the recent research of Miroslav Radman. However, the study of how cellular proteins are damaged by oxidative processes is still in its infancy.

View Article and Find Full Text PDF

Ionizing radiation (IR) is lethal to most organisms at high doses, damaging every cellular macromolecule via induction of reactive oxygen species (ROS). Utilizing experimental evolution and continuing previous work, we have generated the most IR-resistant populations developed to date. After 100 cycles of selection, the dose required to kill 99% the four replicate populations (IR9-100, IR10-100, IR11-100, and IR12-100) has increased from 750 Gy to approximately 3,000 Gy.

View Article and Find Full Text PDF

Recent work has begun to investigate the role of protein damage in cell death because of ionizing radiation (IR) exposure, but none have been performed on a proteome-wide basis, nor have they utilized MS (MS) to determine chemical identity of the amino acid side chain alteration. Here, we use to perform the first MS analysis of IR-treated intact cells on a proteome scale. From quintuplicate IR-treated (1000 Gy) and untreated replicates, we successfully quantified 13,262 peptides mapping to 1938 unique proteins.

View Article and Find Full Text PDF

Wood-devastating insects utilize their symbiotic microbes with lignocellulose-degrading abilities to extract energy from recalcitrant woods. It is well known that free-living lignocellulose-degrading fungi secrete various carbohydrate-active enzymes (CAZymes) to degrade plant cell wall components, mainly cellulose, hemicellulose, and lignin. However, CAZymes from insect-symbiotic fungi have not been well documented except for a few examples.

View Article and Find Full Text PDF

To identify modifications to amino acids that are directly induced by ionizing radiation, free amino acids and 3-residue peptides were irradiated using a linear accelerator (Linac) radiotherapy device. Mass spectrometry was performed to detail the relative sensitivity to radiation as well as identify covalent, radiation-dependent adducts. The order of reactivity of the 20 common amino acids was generally in agreement with published literature except for His (most reactive of the 20) and Cys (less reactive).

View Article and Find Full Text PDF

FERONIA (FER), one of the 17 malectin-like receptor-like kinases encoded in the Arabidopsis genome, acts as a receptor for a 5 kDa growth-inhibiting secreted protein hormone, rapid alkalinization factor 1 (RALF1). Upon binding the peptide ligand, FER is involved in a variety of signaling pathways eliciting ovule fertilization and vegetative root cell expansion. Here, we report the use of mass spectrometry-based, carbodiimide-mediated protein carboxyl group (aspartic and glutamic acid) footprinting to map solvent accessible amino acids of the ectodomain of FER (ectoFER), including those involved in RALF1 binding and/or allosteric changes.

View Article and Find Full Text PDF

Protein three-dimensional structure dynamically changes in solution depending on the presence of ligands and interacting proteins. Methods for detecting these changes in protein conformation include 'protein footprinting,' using mass spectrometry. We describe herein a new technique, PLIMB (Plasma Induced Modification of Biomolecules), that generates µs bursts of hydroxyl radicals from water, to measure changes in protein structure via altered solvent accessibility of amino acid side chains.

View Article and Find Full Text PDF

There are more than 600 receptor-like kinases (RLKs) in , but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1.

View Article and Find Full Text PDF

The wall-associated kinases (WAKs)(1)are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides.

View Article and Find Full Text PDF

In Arabidopsis, defense signaling is triggered by the perception of conserved molecular patterns by pattern recognition receptors (PRRs). Signal transduction from the PRRs requires members of a family of Receptor-Like Cytoplasmic Kinases (RLCKs). Previously, we described one such RLCK, PTI Compromised Receptor-Like Cytoplasmic Kinase 1 (PCRK1) that is important for immunity induced by Microbe Associated Molecular Patterns (MAMPs) as well as Damage Associated Molecular Patterns (DAMPs).

View Article and Find Full Text PDF

Abscisic acid (ABA)¹ is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes.

View Article and Find Full Text PDF

Elucidating how plants sense and respond to water loss is important for identifying genetic and chemical interventions that may help sustain crop yields in water-limiting environments. Currently, the molecular mechanisms involved in the initial perception and response to dehydration are not well understood. Modern mass spectrometric methods for quantifying changes in the phosphoproteome provide an opportunity to identify key phosphorylation events involved in this process.

View Article and Find Full Text PDF

Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana.

View Article and Find Full Text PDF

The Arabidopsis thaliana plasma membrane proton ATPase genes, AHA1 and AHA2, are the two most highly expressed isoforms of an 11 gene family and are collectively essential for embryo development. We report the translational fusion of a tandem affinity-purification tag to the 5' end of the AHA1 open reading frame in a genomic clone. Stable expression of TAP-tagged AHA1 in Arabidopsis rescues the embryonic lethal phenotype of endogenous double aha1/aha2 knockdowns.

View Article and Find Full Text PDF

Within the past two decades, the biological application of mass spectrometric technology has seen great advances in terms of innovations in hardware, software, and reagents. Concurrently, the burgeoning field of proteomics has followed closely (Yates et al., Annu Rev Biomed Eng 11:49-79, 2009)-and with it, importantly, the ability to globally assay altered levels of posttranslational modifications in response to a variety of stimuli.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5e0tcj4om6ajmoifp1j31jd2igp2b46j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once