Publications by authors named "Benjamin Aroeti"

Enteropathogenic (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit.

View Article and Find Full Text PDF

Enteropathogenic (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins.

View Article and Find Full Text PDF

Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production.

View Article and Find Full Text PDF

EspZ and Tir are essential virulence effectors of enteropathogenic (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria.

View Article and Find Full Text PDF

Enteropathogenic are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit.

View Article and Find Full Text PDF

A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria-the energy powerhouse of the cell-are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity.

View Article and Find Full Text PDF

The ability of diarrheagenic bacterial pathogens, such as enteropathogenic (EPEC), to modulate the activity of mitogen-activated protein kinases (MAPKs) and cell survival has been suggested to benefit bacterial colonization and infection. However, our understanding of the mechanisms by which EPEC modulate these functions is incomplete. In this study, we show that the EPEC type III secreted effector Map stimulates the sheddase activity of the disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and the ERK and p38 MAPK signaling cascades.

View Article and Find Full Text PDF

Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts.

View Article and Find Full Text PDF
Article Synopsis
  • Enteropathogenic E. coli (EPEC) uses a type III secretion system to inject effector proteins, like EspH, into host intestinal cells, affecting signaling pathways.
  • EspH recruits the tetraspanin CD81 to infection sites initially, but later excludes itself from CD81 microdomains to effectively inhibit the MAPK/Erk signaling pathway, particularly in the context of TNF-α signaling.
  • The study suggests that EPEC employs this mechanism to suppress innate immunity and promote its survival in the host’s gut.
View Article and Find Full Text PDF

Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G.

View Article and Find Full Text PDF

GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry-hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells.

View Article and Find Full Text PDF

Cell morphology is often used as a valuable indicator of the physical condition and general status of living cells. We demonstrate a noninvasive method for morphological characterization of adherent cells. We measure infrared reflectivity spectrum at oblique angle from living cells cultured on thin Au film, and utilize the unique properties of the confined infrared waves (i.

View Article and Find Full Text PDF

We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4-2.

View Article and Find Full Text PDF

Type IV pili (Tfp) play a primary role in mediating the adherence of pathogenic bacteria to their hosts. The pilus filament can retract with an immense force. However, the role of this activity in microbial pathogenesis has not been rigorously explored.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC) is an important human pathogen that causes acute infantile diarrhea. The type IV bundle-forming pili (BFP) of typical EPEC strains are dynamic fibrillar organelles that can extend out and retract into the bacterium. The bfpF gene encodes for BfpF, a protein that promotes pili retraction.

View Article and Find Full Text PDF

The development of novel technologies capable of monitoring the dynamics of cell-cell and cell-substrate interactions in real time and a label-free manner is vital for gaining deeper insights into these most fundamental cellular processes. However, the label-free technologies available today provide only limited information on these processes. Here, we report a new (to our knowledge) infrared surface plasmon resonance (SPR)-based methodology that can resolve distinct phases of cell-cell and cell-substrate adhesion of polarized Madin Darby canine kidney epithelial cells.

View Article and Find Full Text PDF

We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation.

View Article and Find Full Text PDF

Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation.

View Article and Find Full Text PDF

We report on the application of surface plasmon resonance (SPR), based on Fourier transform infrared spectroscopy in the mid-infrared wavelength range, for real-time and label-free sensing of transferrin-induced endocytic processes in human melanoma cells. The evanescent field of the mid-infrared surface plasmon penetrates deep into the cell, allowing highly sensitive SPR measurements of dynamic processes occurring at significant cellular depths. We monitored in real-time, infrared reflectivity spectra in the SPR regime from living cells exposed to human transferrin (Tfn).

View Article and Find Full Text PDF

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P(2) and PI(3,4,5)P(3) in EPEC pathogenesis remains obscure.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A.

View Article and Find Full Text PDF

Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles.

View Article and Find Full Text PDF

We developed a novel surface plasmon resonance (SPR) method, based on Fourier transform infrared (FTIR) spectroscopy, as a label-free technique for studying dynamic processes occurring within living cells in real time. With this method, the long (micrometer) infrared wavelength produced by the FTIR generates an evanescent wave that penetrates deep into the sample. In this way, it enables increased depth of sensing changes, covering significant portions of the cell-height volumes.

View Article and Find Full Text PDF