Publications by authors named "Benjamin Allardyce"

The remarkable toughness (>70 MJ m) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin.

View Article and Find Full Text PDF

Cardiovascular diseases are a major global health challenge. Blood vessel disease and dysfunction are major contributors to this healthcare burden, and the development of tissue-engineered vascular grafts (TEVGs) is required, particularly for the replacement of small-diameter vessels. Silk fibroin (SF) is a widely used biomaterial for TEVG fabrication due to its high strength and biocompatibility.

View Article and Find Full Text PDF

Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored.

View Article and Find Full Text PDF

Introduction: Fertilizer management is crucial to maintaining a balance between environmental health, plant health, and total crop yield. Farmers are overutilizing fertilizers with a mind set to enhance the productive capacity of the field, which adversely impacts soil fertility and causes serious environmental hazards. To mitigate the issues of over-utilization of fertilizers, controlled-release fertilizers were developed using nitrogen fertilizer (ammonium chloride) loaded on cellulose nanofibres (named CNF*N).

View Article and Find Full Text PDF

Silk fibroin interactions with metallic surfaces can provide utility for medical materials and devices. Toward this goal, titanium alloy (Ti6Al4 V) was covalently grafted with polyacrylamide via electrochemically reducing 4-nitrobenzene diazonium salt in the presence of acrylamide. Analysis of the modified surfaces with FT-IR spectra, SEM and AFM were consistent with surface grafting.

View Article and Find Full Text PDF

Rice straw is a waste product generated after the harvesting of rice crops and is commonly disposed of by burning it off in open fields. This study explored the potential for the extraction and conversion of cellulose to cellulose nanofibres (CNFs) to be used as smart delivery systems for fertilizers applications. In this study, alkali, steam explosion, and organosolv treatments were investigated for cellulose extraction efficiency.

View Article and Find Full Text PDF

Recently, the development of sustainable and environmentally friendly biomaterials has gained the attention of researchers as potential alternatives to petroleum-based materials. Biomaterials are a promising candidate to mitigate sustainability issues due to their renewability, biodegradability, and cost-effectiveness. Thus, the purpose of this study is to explore a cost-effective biomaterial-based delivery system for delivering fertilizers to plants.

View Article and Find Full Text PDF

Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive.

View Article and Find Full Text PDF

Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair.

View Article and Find Full Text PDF

Bonding dissimilar materials has been a persistent challenge for decades. This paper presents a method to modify a stainless steel surface (316 L), routinely used in medical applications to enable the significant adhesion of a biopolymer (silk fibroin). The metallic surface was first covalently grafting with polyacrylamide, to enable a hydrogen bonding compatible surface.

View Article and Find Full Text PDF

This work aims to understand how pre-freezing treatments (-20 °C, -80 °C or -196 °C (liquid nitrogen)) affect the microstructure, mechanical properties and secondary structure of silk scaffolds prepared from lyophilization of silk hydrogels and silk solutions. It is found that in comparison with silk solutions, silk hydrogels at the same silk fibroin concentrations produce scaffolds with more nanofibrous structures when they are pre-frozen at the different temperatures. Although pre-freezing with liquid nitrogen can produce nanofibrous scaffolds from either a silk solution (low concentration of 2%) or silk hydrogel (produced from 2 to 6% silk fibroin solutions), aligned macro-channels can be produced only from silk hydrogels.

View Article and Find Full Text PDF

Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties.

View Article and Find Full Text PDF

We characterised fibres and papers of microfibrillated silk from Bombyx mori produced by mechanical and enzymatic process. Milling increased the specific surface area of fibres from 1.5 to 8.

View Article and Find Full Text PDF

Wet spinning of silkworm silk has the potential to overcome the limitations of the natural spinning process, producing fibers with exceptional mechanical properties. However, the complexity of the extraction and spinning processes have meant that this potential has so far not been realized. The choice of silk processing parameters, including fiber degumming, dissolving, and concentration, are critical in producing a sufficiently viscous dope, while avoiding silk's natural tendency to gel via self-assembly.

View Article and Find Full Text PDF

Silk fibroin (SF) membranes are finding widespread use as biomaterial scaffolds in a range of tissue engineering applications. The control over SF scaffold degradation kinetics is usually driven by the proportion of SF crystalline domains in the formulation, but membranes with a high β-sheet content are brittle and still contain amorphous domains, which are highly susceptible to enzymatic degradation. In this work, photo-cross-linking of SF using a ruthenium-based method, and with the addition of glycerol, was used to generate robust and flexible SF membranes for long-term tissue engineering applications requiring slow degradation of the scaffolds.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are in situ synthesized for the first time on microfibrillated silk (MFS) exfoliated from domesticated Philosamia cynthia ricini (eri) and Bombyx mori (mulberry) silkworm silk fibers. The process is rapid (hours time), does not rely on harmful chemicals, and produces robust and flexible AgNPs coated MFS (MFS-AgNPs) protein papers with excellent handling properties. None of these can be achieved by approaches used in the past to fabricate AgNPs silk systems.

View Article and Find Full Text PDF

Low-molecular weight (LMW) silk was utilized as a LMW silk plasticizer for regenerated silk, generating weak physical crosslinks between high-molecular weight (HMW) silk chains in the amorphous regions of a mixed solution of HMW/LMW silk. The plasticization effect of LMW silk was investigated using mechanical testing, Raman spectroscopy, and wide-angle X-ray scattering (WAXS). Small amounts (10%) of LMW silk resulted in a 19.

View Article and Find Full Text PDF

Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties.

View Article and Find Full Text PDF

Silk fiber is formed by an assembly of fibrils. The fibrils can be isolated by a top-down mechanical process called microfibrillation and the fibrils are known as microfibrillated silk (MFS). The process involves chopping, milling, enzyme treatment and high-pressure homogenization.

View Article and Find Full Text PDF

Silk fibroin is an excellent biopolymer for application in a variety of areas, such as textiles, medicine, composites and as a novel material for additive manufacturing. In this work, silk membranes were surface modified by polymerization of aqueous acrylic acid, initiated by the reduction of various aryldiazonium salts with vitamin C. Treatment times of 20 min gave membranes which possessed increased tensile strength, tensile modulus, and showed significant increased resistance to needle puncture (+131%), relative to 'untreated' standards.

View Article and Find Full Text PDF

Sustained, local delivery of the antibiotic ciprofloxacin under different formats from porous silk protein-based memory foam systems was studied. Similarly, protease XIV was incorporated during processing to provide control of the degradation kinetics of the silk materials. In vitro antibiotic release studies combined with degradation assessments were utilized to assess the mechanisms and kinetics of release from the silk materials.

View Article and Find Full Text PDF

The exfoliation of silk fiber is an attractive method to produce silk micro- and nanofibers that retain the secondary structure of native silk. However, most fibrillation methods used to date require the use of toxic and/or expensive solvents and the use of high energy. This study describes a low cost, scalable method to produce microfibrillated silk nanofibers without the use of toxic chemicals by controlling the application of shear using commercially scalable milling and homogenization equipment.

View Article and Find Full Text PDF

Silk, with highly crystalline structure and well-documented biocompatibility, is promising to be used as reinforcing material and build functionalized composite scaffolds. In the present study, we developed chitosan/silk composite scaffolds using silk particles, silk microfibres and nanofibres via 3D printing method. The three forms of silk fillers with varied shapes and dimensions were obtained via different processing methods and evaluated of their morphology, crystalline structure and thermal property.

View Article and Find Full Text PDF

Reported is a fast and versatile protocol to surface modify pre-cast silk membranes targeting tyrosine residues. Enriched alkyne silk membranes were prepared using this method and azides possessing a range of functional groups were tethered to the membrane surface using click chemistry to give a range of water contact angles from 85 ± 3° to 34 ± 6°.

View Article and Find Full Text PDF