Resonator networks are ubiquitous in natural and engineered systems, such as solid-state materials, electrical circuits, quantum processors, and even neural tissue. To understand and manipulate these networks it is essential to characterize their building blocks, which include the mechanical analogs of mass, elasticity, damping, and coupling of each resonator element. While these mechanical parameters are typically obtained from response spectra using least-squares fitting, this approach requires a priori knowledge of all parameters and is susceptible to large error due to convergence to local minima.
View Article and Find Full Text PDFArrays of coupled nanoelectromechanical resonators are a promising foundation for implementing large-scale network applications, such as mechanical-based information processing and computing, but their practical realization remains an outstanding challenge. In this work, we demonstrate a scalable platform of suspended graphene resonators, such that neighboring resonators are persistently coupled mechanically. We provide evidence of strong coupling between neighboring resonators using two different tuning methods.
View Article and Find Full Text PDFUnderstanding the impact of the geometry and material composition of electrodes on the survival and behavior of retinal cells is of importance for both fundamental cell studies and neuromodulation applications. We investigate how dissociated retinal cells from C57BL/6J mice interact with electrodes made of vertically-aligned carbon nanotubes grown on silicon dioxide substrates. We compare electrodes with different degrees of spatial confinement, specifically fractal and grid electrodes featuring connected and disconnected gaps between the electrodes, respectively.
View Article and Find Full Text PDFMany techniques to fabricate complex nanostructures and quantum emitting defects in low dimensional materials for quantum information technologies rely on the patterning capabilities of focused ion beam (FIB) systems. In particular, the ability to pattern arrays of bright and stable room temperature single-photon emitters (SPEs) in 2D wide-bandgap insulator hexagonal boron nitride (hBN) via high-energy heavy-ion FIB allows for direct placement of SPEs without structured substrates or polymer-reliant lithography steps. However, the process parameters needed to create hBN SPEs with this technique are dependent on the growth method of the material chosen.
View Article and Find Full Text PDFControlled assembly of retinal cells on artificial surfaces is important for fundamental cell research and medical applications. We investigate fractal electrodes with branches of vertically-aligned carbon nanotubes and silicon dioxide gaps between the branches that form repeating patterns spanning from micro- to milli-meters, along with single-scaled Euclidean electrodes. Fluorescence and electron microscopy show neurons adhere in large numbers to branches while glial cells cover the gaps.
View Article and Find Full Text PDFRetinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity-most notably in subretinal implants-because they can be patterned into high-aspect-ratio, micrometer-size electrodes.
View Article and Find Full Text PDFArrays of nanoelectromechanical resonators (NEMS) have shown promise for a suite of applications, from nanomechanical information processing technologies to mass spectrometry. A fundamental challenge toward broader adoption of NEMS arrays is a lack of viable frequency tuning methods, which must simultaneously allow for persistent and reversible control of single resonators while also being scalable to large arrays of devices. In this work, we demonstrate an electro-optic tuning method for graphene-based NEMS where locally photoionized charge tensions a suspended membrane and tunes its resonance frequency.
View Article and Find Full Text PDFBolometers are a powerful means of detecting light. Emerging applications demand that bolometers work at room temperature, while maintaining high speed and sensitivity, properties which are inherently limited by the heat capacity of the detector. To this end, graphene has generated interest, because it has the lowest mass per unit area of any material, while also possessing extreme thermal stability and an unmatched spectral absorbance.
View Article and Find Full Text PDFQuantum emitters (QEs) in 2D hexagonal boron nitride (hBN) are extremely bright and are stable at high temperature and under harsh chemical conditions. Because they reside within an atomically thin 2D material, these QEs have a unique potential to couple strongly to hybrid optoelectromechanical and quantum devices. However, this potential for coupling has been underexplored because of challenges in nanofabrication and patterning of hBN QEs.
View Article and Find Full Text PDFExtended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.
View Article and Find Full Text PDFQuantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter.
View Article and Find Full Text PDFThe nitrogen-vacancy (NV) center in diamond is an attractive platform for quantum information and sensing applications because of its room temperature operation and optical addressability. A major research effort focuses on improving the quantum coherence of this defect in engineered micro- and nanoscale diamond particles (DPs), which could prove useful for high-resolution sensing in fluidic environments. In this work we fabricate cylindrical diamonds particles with finely tuned and highly reproducible sizes (diameter and height ranging from 100 to 700 and 500 nm to 2 μm, respectively) using high-purity, single-crystal diamond membranes with shallow-doped NV centers.
View Article and Find Full Text PDFUsing an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution.
View Article and Find Full Text PDFWe report a new and highly versatile approach to artificial layered materials synthesis which borrows concepts of molecular beam epitaxy, self-assembly, and graphite intercalation compounds. It readily yields stacks of graphene (or other two-dimensional sheets) separated by virtually any kind of "guest" species. The new material can be "sandwich like", for which the guest species are relatively closely spaced and form a near-continuous inner layer of the sandwich, or "veil like", where the guest species are widely separated, with each guest individually draped within a close-fitting, protective yet atomically thin graphene net or veil.
View Article and Find Full Text PDFWe demonstrate a process for batch production of large-area (100-3000 microm(2)) patterned free-standing graphene membranes on Cu scaffolds using chemical vapor deposition (CVD)-grown graphene. This technique avoids the use of silicon and transfers of graphene. As one application of this technique, we fabricate transmission electron microscopy (TEM) sample supports.
View Article and Find Full Text PDFThe potential size and power benefits of resonant NEMS devices are frequently mitigated by the need for relatively large, high-frequency, high-power electronics. Here we demonstrate controllable, sustained self-oscillations in singly clamped carbon nanotubes operating with a single dc voltage supply, and we develop a model that predicts the required voltage on the basis of the material properties and device geometry. Using this model, we demonstrate for the first time top-down, self-oscillating NEMS devices suitable for large-scale integration.
View Article and Find Full Text PDF