Publications by authors named "Benjamin A Miller"

Rehabilitation after neurological injury can be provided by robots that help patients perform different exercises. Multiple such robots can be combined in a rehabilitation robot gym to allow multiple patients to perform a diverse range of exercises simultaneously. In pursuit of better multipatient supervision, we aim to develop an automated assignment system that assigns patients to different robots during a training session to maximize their skill development.

View Article and Find Full Text PDF

A robotic gym with multiple rehabilitation robots allows multiple patients to exercise simultaneously under the supervision of a single therapist. The multi-patient training outcome can potentially be improved by dynamically assigning patients to robots based on monitored patient data. In this paper, we present an approach to learn dynamic patient-robot assignment from a domain expert via supervised learning.

View Article and Find Full Text PDF

Background: A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.

View Article and Find Full Text PDF

A robotic rehabilitation gym is a setup that allows multiple patients to exercise together using multiple robots. The effectiveness of training in such a group setting could be increased by dynamically assigning patients to specific robots. In this simulation study, we develop an automated system that dynamically makes patient-robot assignments based on measured patient performance to achieve optimal group rehabilitation outcome.

View Article and Find Full Text PDF

Back injuries and other occupational injuries are common in workers who engage in long, arduous physical labor. The risk of these injuries could be reduced using assistive devices that automatically detect an object lifting motion and support the user while they perform the lift; however, such devices must be able to detect the lifting motion as it occurs. We thus developed a system to detect the start and end of a lift (performed as a stoop or squat) in real time based on pelvic angle and the distance between the user's hands and the user's center of mass.

View Article and Find Full Text PDF

Trunk exoskeletons are wearable devices that support wearers during physically demanding tasks by reducing biomechanical loads and increasing stability. In this paper, we present a prototype sensorized passive trunk exoskeleton, which includes five motion processing units (3-axis accelerometers and gyroscopes with onboard digital processing), four one-axis flex sensors along the exoskeletal spinal column, and two one-axis force sensors for measuring the interaction force between the wearer and exoskeleton. A pilot evaluation of the exoskeleton was conducted with two wearers, who performed multiple everyday tasks (sitting on a chair and standing up, walking in a straight line, picking up a box with a straight back, picking up a box with a bent back, bending forward while standing, bending laterally while standing) while wearing the exoskeleton.

View Article and Find Full Text PDF