Patients with HPV-localized head and neck cancer (HNC) show inferior outcomes after surgery and radiochemotherapy compared to HPV-associated cancers. The underlying mechanisms remain elusive, but differences in immune status and immune activity may be implicated. In this study, we analyzed immune profiles of CD8 T cells and myeloid-derived suppressor cells (MDSC) in HPV versus HPV disease.
View Article and Find Full Text PDFThe incidence of human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) has surpassed that of cervical cancer and is projected to increase rapidly until 2060. The coevolution of HPV with transforming epithelial cells leads to the shutdown of host immune detection. Targeting proximal viral nucleic acid-sensing machinery is an evolutionarily conserved strategy among viruses to enable immune evasion.
View Article and Find Full Text PDFThe role of T cell receptor (TCR) signaling for adaptive immune responses is essential. The ability to respond to a broad spectrum of tumor antigens requires an adaptive selection of various TCR. So far, little is known about the role of TCR richness and clonality in the cellular immune response to head and neck cancer (HNC), though the Endothelial Growth Factor Receptor (EGFR)-specific CD8 T cell response can be enhanced by cetuximab therapy.
View Article and Find Full Text PDFThe response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming. Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.
View Article and Find Full Text PDFImproved understanding of expression of immune checkpoint receptors (ICR) on tumor-infiltrating lymphocytes (TIL) may facilitate more effective immunotherapy in head and neck cancer (HNC) patients. A higher frequency of PD-1 TIL has been reported in human papillomavirus (HPV) HNC patients, despite the role of PD-1 in T-cell exhaustion. This discordance led us to hypothesize that the extent of PD-1 expression more accurately defines T-cell function and prognostic impact, because PD-1 T cells may be more exhausted than PD-1 T cells and may influence clinical outcome and response to anti-PD-1 immunotherapy.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSC) are a major component of the tumor microenvironment in patients with head and neck squamous cell carcinoma (HNSCC). MSC display innate and regulatory immunologic functions, very similar to many hematopoietic 'classical' immune cells. Conversion of ATP to immunosuppressive adenosine is an immunosuppressive mechanism utilized by other hematopoietic immune cells.
View Article and Find Full Text PDFIntroduction: Mesenchymal stromal cells (MSC) are an integral cellular component of the tumor microenvironment. Nevertheless, very little is known about MSC originating from human malignant tissue and modulation of these cells by tumor-derived factors. The aim of this study was to isolate and characterize MSC from head and neck squamous cell carcinoma (HNSCC) and to investigate their interaction with tumor cells.
View Article and Find Full Text PDF