Publications by authors named "Benjamin A Jorns"

The anomalous diffusion of particles and energy in magnetized plasma systems is a widespread phenomenon that can adversely impact their operation and preclude predictive models. In this Letter, this diffusion is characterized noninvasively in a low-temperature, Hall-type plasma. Laser-induced fluorescence and incoherent Thomson scattering measurements are combined with a 1D generalized Ohm's law to infer the time-averaged inverse Hall parameter, a transport coefficient that governs cross-field diffusion.

View Article and Find Full Text PDF

The contribution of the electron drift instability to anomalous electron transport is experimentally assessed in a Hall effect discharge. The transport is represented by an anomalous collision frequency, which is related through quasilinear theory to the energy and growth rate of the instability. The wave energy is measured directly with ion saturation probes, while estimates of the growth rate are employed based on both linearized theory and direct measurement.

View Article and Find Full Text PDF

The linear growth and nonlinear energy transfer of the electron drift instability (EDI) are experimentally measured in the plume of a low-temperature, Hall effect discharge. A frequency-based bispectral analysis technique applied to fast ion density fluctuation measurements shows a growth rate function that is qualitatively similar to predictions from the linear instability dispersion relation, but an order of magnitude smaller. Calculation of the nonlinear transfer function indicates multiple three-wave interactions between high-frequency resonances of the instability in addition to an inverse energy cascade toward lower-frequency modes.

View Article and Find Full Text PDF

The design and performance of a thrust stand for characterizing low-power electric propulsion thrusters are presented. The thrust stand is capable of sub-millinewton resolution for devices on the order of 1 kg. The architecture is based on a counter-weighted hanging pendulum design, a variant of the standard hanging pendulum that employs a counterweight to increase force resolution.

View Article and Find Full Text PDF

A frequency-averaged quasilinear model is derived and experimentally validated for the evolution of ion acoustic turbulence (IAT) along the centerline of a 100-A class, LaB_{6} hollow cathode. Probe-based diagnostics and a laser induced fluorescence system are employed to measure the properties of both the turbulence and the background plasma parameters as they vary spatially in the cathode plume. It is shown that for the three discharge currents investigated, 100 A, 130 A, and 160 A, the spatial growth of the total energy density of the IAT in the near field of the cathode plume is exponential and agrees quantitatively with the predicted growth rates from the quasilinear formulation.

View Article and Find Full Text PDF

The temporal fluctuations in the near plume of a 100-A LaB(6) hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values.

View Article and Find Full Text PDF