Publications by authors named "Benjamin A Clark"

We evaluated four DNA vaccine candidates for their ability to produce virus-like particles (VLPs) and elicit a protective immune response against Foot-and-mouth disease virus (FMDV) in cattle. Two traditional DNA plasmids and two DNA minicircle constructs were evaluated. Both the pTarget O1P1-3C plasmid and O1P1-3C minicircle encoded a wild-type FMDV 3C protease to process the P1-2A polypeptide, whereas the O1P1-HIV-3C minicircle used an HIV-1 ribosomal frameshift to down-regulate expression of a mutant 3C protease.

View Article and Find Full Text PDF

To improve the production of foot-and-mouth disease (FMD) molecular vaccines, we sought to understand the effects of the FMD virus (FMDV) 2B viroporin in an experimental, plasmid-based, virus-like particle (VLP) vaccine. Inclusion of the FMDV viroporin 2B into the human Adenovirus 5 vectored FMD vaccine enhanced transgene expression despite independent 2B expression negatively affecting cell viability. Evaluating both wildtype 2B and mutants with disrupted viroporin activity, we confirmed that viroporin activity is detrimental to overall transgene expression when expressed independently.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the use of Modified Vaccinia virus Ankara-Bavarian Nordic (MVA-BN®) to develop recombinant vaccines for foot-and-mouth disease (FMD) targeting newly emerging strains of the FMD virus (FMDV).
  • The study involved expressing different variants of the FMDV 3C protease to enhance vaccine safety while still effectively producing the necessary FMDV antigens.
  • Two MVA-BN FMD constructs were found to be safe and effective in cattle, achieving full protection against clinical FMD and the virus, while also allowing for easy differentiation between vaccinated and infected animals.
View Article and Find Full Text PDF

The production of experimental molecular vaccines against foot-and-mouth disease virus utilizes the viral encoded 3C protease for processing of the P1 polyprotein. Expression of wild type 3C protease is detrimental to host cells. The molecular vaccine constructs containing the 3C protease L127P mutant significantly reduce adverse effects associated with protease expression while retaining the ability to process and assemble virus-like particles.

View Article and Find Full Text PDF

This study reports the use of a site-specific recombination cloning technique for rapid development of a full-length cDNA clone that can produce infectious vesicular stomatitis New Jersey virus (VSNJV). The full-length genome of the epidemic VSNJV NJ0612NME6 strain was amplified in four overlapping cDNA fragments which were linked together and cloned into a vector plasmid by site-specific recombination. Furthermore, to derive infectious virus, three supporting plasmid vectors containing either the nucleoprotein (N), phosphoprotein (P) or polymerase (L) genes were constructed using the same cloning methodology.

View Article and Find Full Text PDF

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates.

View Article and Find Full Text PDF

Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells.

View Article and Find Full Text PDF

The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a luciferase reporter system.

View Article and Find Full Text PDF