Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g.
View Article and Find Full Text PDFPredator-prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system.
View Article and Find Full Text PDFHydrodynamic stress shapes the flora and fauna that exist in wave-swept environments, alters species interactions, and can become the primary community structuring agent. Yet, hydrodynamics can be difficult to quantify because instrumentation is expensive, some methods are unreliable, and accurately measuring spatial and temporal differences can be difficult. Here, we explored the utility of barnacles as potential biological flow-indicators.
View Article and Find Full Text PDFThe capacity of an apex predator to produce nonconsumptive effects (NCEs) in multiple prey trophic levels can create considerable complexity in nonconsumptive cascading interactions, but these effects are poorly studied. We examined such effects in a model food web where the apex predator (blue crabs) releases chemical cues in urine that affect both the intermediate consumer (mud crabs seek shelter) and the basal prey (oysters are induced to grow stronger shells). Shelter availability and predator presence were manipulated in a laboratory experiment to identify patterns in species interactions.
View Article and Find Full Text PDFMany prey species can adjust morphology to reduce predation risk in response to predator cues. Enhancing prey defenses using predator cues may improve survival of cultivated species and enhance species restoration efforts, but assessment of such benefits at industrially relevant scales is needed. We examined how raising a model foundation species, oysters (Crassostrea virginica), under commercial hatchery conditions with cues from two common predator species can improve survival across a variety of predator regimes and environmental conditions.
View Article and Find Full Text PDFDrift macroalgae, often found in clumps or mats adjacent to or within seagrass beds, can increase the value of seagrass beds as habitat for nekton via added food resources and structural complexity. But, as algal biomass increases, it can also decrease light availability, inhibit faunal movements, smother benthic communities, and contribute to hypoxia, all of which can reduce nekton abundance. We quantified the abundance and distribution of drift macroalgae within seagrass meadows dominated by turtle grass across the northern Gulf of Mexico and compared seagrass characteristics to macroalgal biomass and distribution.
View Article and Find Full Text PDFMarine ecosystems face numerous challenges from natural and anthropogenic sources. For example, excessive rainfall from storms rapidly lowers salinity, which can destroy coastal foundation species and their associated fauna [1], while fishing can alter coastal food webs, reduce biodiversity, and lower ecosystem resilience [2]. Concurrently, mass disruptions to fishing activity are common following disasters such as hurricanes, oil spills, and tsunamis, which may lead to increased populations of harvested species [3].
View Article and Find Full Text PDFIndividual phenotypic differences are increasingly recognized as key drivers of ecological processes. However, studies examining the relative importance of these differences in comparison with environmental factors or how individual phenotype interacts across different environmental contexts remain lacking. We performed two field experiments to assess the concurrent roles of personality differences and habitat quality in mediating individual mortality and dispersal.
View Article and Find Full Text PDFAssessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m).
View Article and Find Full Text PDFPredator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions.
View Article and Find Full Text PDFThe physiological condition and fecundity of an organism is frequently controlled by diet. As changes in environmental conditions often cause organisms to alter their foraging behavior, a comprehensive understanding of how diet influences the fitness of an individual is central to predicting the effect of environmental change on population dynamics. We experimentally manipulated the diet of the economically and ecologically important blue crab, Callinectes sapidus, to approximate the effects of a dietary shift from primarily animal to plant tissue, a phenomenon commonly documented in crabs.
View Article and Find Full Text PDF