Publications by authors named "Benito-Martin M"

Cell therapy is a promising strategy for treating neurological pathologies but requires invasive methods to bypass the blood-brain barrier restrictions. The nose-to-brain route has been presented as a direct and less invasive alternative to access the brain. The primary limitations of this route are low retention in the olfactory epithelium and poor cell survival in the harsh conditions of the nasal cavity.

View Article and Find Full Text PDF

Background: Cognitive deficits are among the main disabling symptoms in COVID-19 patients and post-COVID syndrome (PCS). Within brain regions, the hippocampus, a key region for cognition, has shown vulnerability to SARS-CoV-2 infection. Therefore, in vivo detailed evaluation of hippocampal changes in PCS patients, validated on post-mortem samples of COVID-19 patients at the acute phase, would shed light into the relationship between COVID-19 and cognition.

View Article and Find Full Text PDF

The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established.

View Article and Find Full Text PDF

Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose aetiology is unknown. It is characterised by upper and lower motor neuron degeneration. Approximately 90% of cases of ALS are sporadic, whereas the other 10% are familial.

View Article and Find Full Text PDF

Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas.

View Article and Find Full Text PDF

Introduction: Genomic studies have identified numerous genetic variants associated with susceptibility to multiple sclerosis (MS); however, each one explains only a small percentage of the risk of developing the disease. These variants are located in genes involved in specific pathways, which supports the hypothesis that the risk of developing MS may be linked to alterations in these pathways, rather than in specific genes. We analyzed the role of the TNFRSF1A gene, which encodes one of the TNF-α receptors involved in a signaling pathway previously linked to autoimmune disease.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system that causes inflammation, demyelinating lesions, and axonal damage and is associated with a high rate of early-onset disability. Disease-modifying therapies are used to mitigate the inflammatory process in MS but do not promote regeneration or remyelination; cell therapy may play an important role in these processes, modulating inflammation and promoting the repopulation of oligodendrocytes, which are responsible for myelin repair. The development of genetic engineering has led to the emergence of stable, biocompatible biomaterials that may promote a favorable environment for exogenous cells.

View Article and Find Full Text PDF

Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration.

View Article and Find Full Text PDF

Introduction: AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation.

Material And Methods: We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation.

View Article and Find Full Text PDF

Introduction: The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions.

Development: We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus.

View Article and Find Full Text PDF

Introduction: Several experimental studies have suggested the potential remyelinating effects of vitamin D (VitD) supplements regardless of the presence of VitD deficiency. This study aims to analyze neurogenesis in a model of toxic demyelination in order to evaluate the effects of VitD on demyelination and remyelination.

Material And Methods: We used 24 male Wistar rats that had received surgical lesions to the corpus callosum and were injected with lysolecithin.

View Article and Find Full Text PDF

Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect.

View Article and Find Full Text PDF

Introduction: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model.

View Article and Find Full Text PDF

Background: Several findings suggest that the amyloid precursor protein (APP) and the amyloid cascade may play a role in motor neuron disease (MND).

Objective: Considering that dementia is one of the most frequent non-motor symptoms in amyotrophic lateral sclerosis (ALS) and that hippocampus is one of the brain areas with greater presence of amyloid-related changes in neurodegenerative diseases, our aim was to analyze the molecular markers of the amyloid cascade of APP in pathology studies of the hippocampus of autopsied patients with ALS and ALS-frontotemporal dementia (FTD).

Methods: We included nine patients with MND and four controls.

View Article and Find Full Text PDF

Introduction: Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons.

Material And Methods: We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution.

View Article and Find Full Text PDF

Introduction: The neurotoxic effects of cerebrospinal fluid (CSF) from patients with amyotrophic lateral sclerosis (ALS) have been reported by various authors who have attributed this neurotoxicity to the glutamate in CSF-ALS.

Material And Methods: Cultures of rat embryonic cortical neurons were exposed to CSF from ALS patients during an incubation period of 24 hours. Optical microscopy was used to compare cellular changes to those elicited by exposure to 100μm glutamate, and confocal microscopy was used to evaluate immunohistochemistry for caspase-3, TNFα, and peripherin.

View Article and Find Full Text PDF

Objective: To analyze the possible role of human herpesvirus (HHVs) and human endogenous retroviruses (HERVs) infection in multiple sclerosis (MS) pathogenesis.

Methods: A total of 92 cerebrospinal fluid (CSF) samples were collected: 48 from MS patients at the first clinically evident demyelinating event, 23 from patients with other inflammatory neurological diseases (OINDs) and 21 from patients with other non-inflammatory neurological diseases (ONINDs). Total DNA and RNA were isolated, and the prevalences and viral loads of herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), HHV-6, HERV-H and HERV-W in the CSF of MS patients and controls were evaluated using a quantitative real-time polymerase chain reaction assay.

View Article and Find Full Text PDF