Publications by authors named "Benito de la Morena"

The main goal of the present study was to provide a detailed analysis of olive pollen transport dynamics in the province of Córdoba (south-western Spain) by applying back-trajectory analysis. Pollen data from 2006 and 2007 were analysed at four monitoring sites: Córdoba city in the centre of the province, Baena and Priego de Córdoba located in the south, and El Cabril reserve (Hornachuelos Natural Park) in the north. Particular attention was paid to nine episodes of high pollen counts.

View Article and Find Full Text PDF

Introduction: Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change.

View Article and Find Full Text PDF

In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics.

View Article and Find Full Text PDF

The calibration of the erythemal irradiance measured by a Yankee Environmental System (YES) UVB-1 biometer is presented using two methods of calibration with a wide range of experimental solar zenith angles (SZAs) and ozone values. The calibration is performed through simultaneous spectral measurements by a calibrated double-monochromator Brewer MK-III spectrophotometer at "El Arenosillo" station, located in southwestern Spain. Because the range of spectral measurements of the Brewer spectrophotometer is 290-363 nm, a previously validated radiative transfer model was used to account for the erythemal contribution between 363 and 400 nm.

View Article and Find Full Text PDF

The effect of adding UV-A radiation (320-400 nm) to photosynthetically active radiation (PAR, 400-700 nm) during growth of the photosynthetic marine microalga Dunaliella bardawil was investigated in this work in terms of cell growth and carotenoid production. Although signs of slow cell growth (slight reduction of chlorophyll and protein content) were observed after 24 h of cell exposure to UV-A (40 micromol photons m(-2) s(-1) and 70 micromol photons m(-2) s(-1)) plus 140 micromol photons m(-2) s(-1) PAR , 84 h exposure to these UV-A conditions slightly stimulated cell growth and increased the photosynthetic efficiency of the exposed cultures. The enhanced cell growth was coupled with an increase in total carotenoid content.

View Article and Find Full Text PDF

In the present work the relation between carotenoids production and cell response mechanisms to oxidative damage was studied. High light intensity and nitrogen starvation, both conditions, which may increase the oxidative damage in microalgae, significantly increased total carotenoids content in Dunaliella bardawil, the effect of N-starvation being more noticeable when acting synergetically with light on carotenoid production. S-starvation stimulated carotenoids production as much as N-starvation.

View Article and Find Full Text PDF

An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula.

View Article and Find Full Text PDF