Many-body entangled systems, in particular topologically ordered spin systems proposed as resources for quantum information processing tasks, often involve highly nonlocal interaction terms. While one may approximate such systems through two-body interactions perturbatively, these approaches have a number of drawbacks in practice. In this Letter, we propose a scheme to simulate many-body spin Hamiltonians with two-body Hamiltonians nonperturbatively.
View Article and Find Full Text PDFIt is well known that the ground state energy of many-particle Hamiltonians involving only 2-body interactions can be obtained using constrained optimizations over density matrices which arise from reducing an N-particle state. While determining which 2-particle density matrices are "N-representable" is a computationally hard problem, all known extreme N-representable 2-particle reduced density matrices arise from a unique N-particle preimage, satisfying a conjecture established in 1972. We present explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions which have degenerate ground states that cannot be distinguished by any 2-body operator.
View Article and Find Full Text PDFMany-body entangled quantum states studied in condensed matter physics can be primary resources for quantum information, allowing any quantum computation to be realized using measurements alone, on the state. Such a universal state would be remarkably valuable, if only it were thermodynamically stable and experimentally accessible, by virtue of being the unique ground state of a physically reasonable Hamiltonian made of two-body, nearest-neighbor interactions. We introduce such a state, composed of six-state particles on a hexagonal lattice, and describe a general method for analyzing its properties based on its projected entangled pair state representation.
View Article and Find Full Text PDF