Publications by authors named "Benhe Zhong"

The Li-rich Mn-based cathode materials (LMRs) deliver excellent energy density and exhibit low cost, which are considered as the most promising cathode materials for the next generation lithium-ion batteries. However, the irreversible redox reaction of the oxygen atoms directly leads to release oxygen and intensifies phase transformation. Besides, the local stress and strain will be generated due to the unit-cell volume difference between R-3m and C2/m phases, which continuously aggravates the collapse of secondary particles.

View Article and Find Full Text PDF

Silicon-based anodes are becoming promising materials due to their high specific capacity. However, the intrinsically large volume change brought about by the alloying reaction results in the crushing of the active particles and destruction of the electrode structure, which severely limits its practical application. Various structured and modified silica-based anodes exhibit improved cycling stability and the demonstrated ability to mitigate their volume changes through interfacial and binder strategies.

View Article and Find Full Text PDF

Boosting the anion redox reaction opens up a possibility of further capacity enhancement on transition-metal-ion redox-only layer-structured cathodes for sodium-ion batteries. To mitigate the deteriorating impact on the internal and surface structure of the cathode caused by the inevitable increase in the operation voltage, probing a solution to promote the bulk-phase crystal structure stability and surface chemistry environment to further facilitate the electrochemical performance enhancement is a key issue. A dual modification strategy of establishing an anion redox hybrid activation trigger agent inside the crystal structure in combination with surface oxide coating is successfully developed.

View Article and Find Full Text PDF

Li-rich cathode materials have emerged as one of the most prospective options for Li-ion batteries owing to their remarkable energy density (>900 Wh kg). However, voltage hysteresis during charge and discharge process lowers the energy conversion efficiency, which hinders their application in practical devices. Herein, the fundamental reason for voltage hysteresis through investigating the O redox behavior under different (de)lithiation states is unveiled and it is successfully addressed by formulating the local environment of O.

View Article and Find Full Text PDF

Large quantities of spent lithium-ion batteries (LIBs) will inevitably be generated in the near future because of their wide application in many fields. It will cause not only resource waste but also environmental pollution if these spent batteries are not properly handled. Until now, the recycling of spent lithium manganate batteries has centered on high-valuable elements such as lithium; however, manganese element and current collector Al foil have not yet attracted wide attention.

View Article and Find Full Text PDF

Ni-rich cathodes with a radial ordered microstructure have been proved to enhance materials' structural stability. However, the construction process of radial structures has not yet been clearly elaborated. Herein, the formation process of radial structures induced by different doped elements has been systematically investigated.

View Article and Find Full Text PDF

Lithium-sulfur batteries with high capacity are considered the most promising candidates for next-generation energy storage systems. Mitigating the shuttle reaction and promoting catalytic conversion within the battery are major challenges in the development of high-performance lithium-sulfur batteries. To solve these problems, a novel composite material GO-CoNiP is synthesized in this study.

View Article and Find Full Text PDF

Addressing the shuttle effect is a critical challenge in realizing practical applications of lithium-sulfur batteries. One promising avenue refers to the surface modification of separators, transitioning them from closed to open structures. In the current investigation, a high ion flux separator was devised by means of MnO self-assembly onto a Porous Polypropylene (PP) separator, subsequently coupling it with biochar.

View Article and Find Full Text PDF

Na Ti O (NTO) with high safety has been regarded as a promising anode candidate for sodium-ion batteries. In the present study, integrated modification of migration channels broadening, charge density re-distribution, and oxygen vacancies regulation are realized in case of Nb-doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g . Moreover, unexpected low-temperature performance with a high discharge capacity of 143 mAh g at 100 mA g under -15 °C is also achieved in the full cell.

View Article and Find Full Text PDF

The low salt adsorption capacities (SACs) of benchmark carbon materials (usually below 20 mg g) are one of the most challenging issues limiting further commercial development of capacitive deionization (CDI), an energetically favorable method for sustainable water desalination. Sodium superionic conductor (NASICON)-structured NaTi(PO) (NTP) materials, especially used in combination with carbon to prepare NTP/C materials, provide emerging options for higher CDI performance but face the problems of poor cycling stability and dissolution of active materials. In this study, we report the development of the yolk-shell nanoarchitecture of NASICON-structured NTP/C materials (denoted as -NTP@C) using a metal-organic framework@covalent organic polymer (MOF@COP) as a sacrificial template and space-confined nanoreactor.

View Article and Find Full Text PDF

Li-rich Mn-based oxides are regarded as the most promising new-generation cathode materials, but their practical application is greatly hindered by structure collapse and capacity degradation. Herein, a rock salt phase is epitaxially constructed on the surface of Li-rich Mn-based cathodes through Mo doping to improve their structural stability. The heterogeneous structure composed of a rock salt phase and layered phase is induced by Mo enriched on the particle surface, and the strong Mo-O bonding can enhance the TM-O covalence.

View Article and Find Full Text PDF

NaV(PO) (NVP) is one of the most potential cathode materials for sodium-ion batteries (SIBs), but its actual electrochemical performance is limited by the defects of large electron and ion transfer resistance. Multicomponent design is considered an effective method to optimize the conductivity of NVP electrodes. Therefore, Cr and Si are added in NVP to form a multielement component of NaVCr(PO)(SiO) (NVP-CS).

View Article and Find Full Text PDF

Li-rich layered materials have attracted much attention for their large capacity (>250 mA h g) stemming from anion redox at high voltage. However, inherent problems, such as capacity decay and voltage decay/hysteresis during cycling, hinder their commercial progress. In this work, an oxygen vacancy-accompanied spinel interface layer is constructed by gas-solid reaction NiCO treatment at 650 °C, which reduces the asymmetry of anion redox and improves structural stability.

View Article and Find Full Text PDF

A nano-fertilizer (FA-APP@ZnO) was designed and prepared based on the copolymer of fulvic acid (FA) and ammonium polyphosphate (APP) with ZnO nanorods embedded, to tackle the antagonism between phosphorus (P) and zinc (Zn) in fertilization. FA-APP@ZnO was confirmed to revert the precipitability of HPO and Zn into a synergistic performance, where FA and APP can disperse ZnO nanorods, and in return, ZnO catalyzes the hydrolysis of the absorbed APP. The hydrolysis rate constant of pyrophosphates consequently increased 8 times.

View Article and Find Full Text PDF

Ultrahigh Ni-rich quaternary layered oxides LiNiCoMnAlO (1 - - - ≥ 0.9) are regarded as some of the most promising cathode candidates for lithium-ion batteries (LIBs) because of their high energy density and low cost. However, poor rate capacity and cycling performance severely limit their further commercial applications.

View Article and Find Full Text PDF

Water-soluble ammonium polyphosphate (APP) has the advantages of good solubility and slow-release characteristics and has the potential to be used in combination with monoammonium phosphate (MAP) as a high phosphorus content slow-release fertilizer to improve the utilization rate of phosphorus during irrigation. Herein, the effects of the APP1 concentration and temperature (278.2-313.

View Article and Find Full Text PDF

Soil amendment products, such as biochar, with both sustained nutrient release and heavy metal retention properties are of great need in agricultural and environmental industries. Herein, we successfully prepared a new biochar material with multinutrient sustained-release characteristics and chromium removal potential derived from distiller grain by wet-process phosphoric acid (WPPA) modification without washing. SEM, TEM TG-IR, in situ DRIFTS and XRD characterization indicated that biochar and polyphosphate formed simultaneously and were tightly intertwined by one-step pyrolysis.

View Article and Find Full Text PDF

The interface structure of the electrode is closely related to the electrochemical performance of lithium-metal batteries (LMBs). In particular, a high-quality solid electrode interface (SEI) and uniform, dense lithium plating/stripping processes play a key role in achieving stable LMBs. Herein, a LiF-rich SEI and a uniform and dense plating/stripping process of the electrolyte by reducing the electrolyte concentration without changing the solvation structure, thereby avoiding the high cost and poor wetting properties of high-concentration electrolytes are achieved.

View Article and Find Full Text PDF

The application value of silicon-based anodes has not been fully realized due to the ∼ 300% volume expansion and poor electronic conductivity. In present study, mesoporous Si/C (MP-Si/C) composite with nanosized primary particles of 30-50 nm and pore diameter of 20-40 nm was proposed, which displays superior Li storage properties. Firstly, Polyacrylic acid (PAA) was applied to fulfill in-situ carbon coating and inhibit the particle growth of SiO generated from tetraethyl orthosilicate (TEOS) in stöber reaction.

View Article and Find Full Text PDF

All solid-state batteries (ASSBs) are regarded as promising energy storage batteries with high energy density and high safety. The polyethylene oxide (PEO)-based electrolyte with succinonitrile (SN) has attracted critical attention for its high ionic conductivity at room temperature. However, SN can react with Li metal to result in an unstable interface between electrolyte and electrode, which deteriorates the electrochemical performance.

View Article and Find Full Text PDF

Lithium metal anodes provide a direction for the development of high-energy-density lithium-ion batteries. To overcome lithium dendritic growth and low Coulombic efficiency in lithium plating/stripping processes, the design of a three-dimensional (3D) host structure is a feasible solution. Herein, copper nanowires -coated with a carbon-rich conjugated framework, poly(1,3,5-triethynylbenzene), and grown on copper foam were constructed as a 3D lithium host, and shown to effectively yield a low nucleation overpotential, smooth lithium deposition, and improved cycling stability.

View Article and Find Full Text PDF

Reducing the interfacial resistance between solid electrolytes and electrodes is critical for developing high-energy density solid-state batteries. In the present study, a simple strategy of designing an integrated cathode and solid electrolyte (ICSE) to avoid a contact interface is proposed and successfully fulfilled with the help of UV curving. Firstly, a porous polymer film (PVDF-HFP/PVDF) was formed on the surface of the porous LiFePO electrode PVP dissolution.

View Article and Find Full Text PDF

Nickel-rich layered oxides have been regarded as a potential cathode material for high-energy-density lithium-ion batteries because of the high specific capacity and low cost. However, the rapid capacity fading due to interfacial side reactions and bulk structural degradation seriously encumbers its commercialization. Herein, a highly stable hybrid surface architecture, which integrates an outer coating layer of TiO&LiTiO and a surficial titanium doping by incorporated TiO, is carefully designed to enhance the structural stability and eliminate lithium impurity.

View Article and Find Full Text PDF

Silicon monoxide (SiO) has been explored and confirmed as a promising anode material of lithium-ion batteries. Compared with pure silicon, SiO possesses a more stable microstructure which makes better comprehensive electrochemical properties. However, the lithiation mechanism remains in dispute, and problems such as poor cyclability, unsatisfactory electrical conductivity, and low initial Coulombic efficiency (ICE) need to be addressed.

View Article and Find Full Text PDF

As a secondary Li-ion battery with high energy density, lithium-sulfur (Li-S) batteries possess high potential development prospects. One of the important ingredients to improve the safety and energy density in Li-S batteries is the solid-state electrolyte. However, the poor ionic conductivity largely limits its application for the commercial market.

View Article and Find Full Text PDF