Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes.
View Article and Find Full Text PDFDrugs that lower plasma apolipoprotein B (ApoB)-containing lipoproteins are central to treating advanced atherosclerosis and provide partial protection against clinical events. Previous research showed that lowering ApoB-containing lipoproteins stops plaque inflammation, but how these drugs affect the heterogeneous population of plaque cells derived from smooth muscle cells (SMCs) is unknown. SMC-derived cells are the main cellular component of atherosclerotic lesions and the source of structural components that determine the size of plaques and their propensity to rupture and trigger thrombosis, the proximate cause of heart attack and stroke.
View Article and Find Full Text PDFEmbryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools.
View Article and Find Full Text PDFNerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment.
View Article and Find Full Text PDFThe Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis.
View Article and Find Full Text PDFAims: Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association.
Methods And Results: Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study.
Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34 progenitors, in AML xenografts.
View Article and Find Full Text PDFBacillus Calmette-Guérin (BCG), the nonpathogenic strain used as tuberculosis vaccine, has been successfully used as treatment for non-muscle invasive bladder cancer for decades, and suggested to potentiate cellular and humoral immune responses. However, the exact mechanism of action is not fully understood. We previously described that BCG mainly activated anti-tumor cytotoxic NK cells with upregulation of CD56 and a CD16 phenotype.
View Article and Find Full Text PDFTissue regeneration requires coordination between resident stem cells and local niche cells. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol.
View Article and Find Full Text PDFGerminal centers (GC) are microstructures where B cells that have been activated by antigen can improve the affinity of their B cell receptors and differentiate into memory B cells (MBCs) or antibody-secreting plasma cells. Here, we have addressed the role of activation-induced deaminase (AID), which initiates somatic hypermutation and class switch recombination, in the terminal differentiation of GC B cells. By combining single cell transcriptome and immunoglobulin clonal analysis in a mouse model that traces AID-experienced cells, we have identified a novel subset of late-prePB cells (L-prePB), which shares the strongest clonal relationships with plasmablasts (PBs).
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms.
View Article and Find Full Text PDFNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known.
View Article and Find Full Text PDFClassically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues.
View Article and Find Full Text PDFThe HIV reservoir is the main barrier to eradicating HIV infection, and resting memory CD4 T (Trm) cells are one of the most relevant cellular component harboring latent proviruses. This is the first study analyzing the transcriptional profile of Trm cells, in two well-characterized groups of HIV patients with distinct mechanisms of viral replication control (spontaneous versus treatment-induced). We use a systems biology approach to unravel subtle but important differences in the molecular mechanisms operating at the cellular level that could be associated with the host's ability to control virus replication and persistence.
View Article and Find Full Text PDFActivation-induced deaminase (AID) initiates antibody diversification in germinal center (GC) B cells through the deamination of cytosines on immunoglobulin genes. AID can also target other regions in the genome, triggering mutations or chromosome translocations, with major implications for oncogenic transformation. However, understanding the specificity of AID has proved extremely challenging.
View Article and Find Full Text PDFIntravenous methylprednisolone (IVMP) is the gold standard treatment in acute relapses of multiple sclerosis. Knowing the response to IVMP in advance could facilitate earlier selection of patients for subsequent courses of therapy. However, molecular mechanisms and changes in gene expression induced by methylprednisolone remain unknown.
View Article and Find Full Text PDFThe activity of calmodulin (CaM) is modulated not only by oscillations in the cytosolic concentration of free Ca(2+), but also by its phosphorylation status. In the present study, the role of tyrosine-phosphorylated CaM [P-(Tyr)-CaM] on the regulation of the epidermal growth factor receptor (EGFR) has been examined using in vitro assay systems. We show that phosphorylation of CaM by rat liver solubilized EGFR leads to a dramatic increase in the subsequent phosphorylation of poly-L-(Glu:Tyr) (PGT) by the receptor in the presence of ligand, both in the absence and in the presence of Ca(2+).
View Article and Find Full Text PDFEndoglin is an auxiliary cell surface receptor for TGF-β family members. Two different alternatively spliced isoforms, long (L)-endoglin and short (S)-endoglin, have been reported. S-endoglin and L-endoglin proteins vary from each other in their cytoplasmic tails that contain 14 and 47 amino acids, respectively.
View Article and Find Full Text PDF