Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows.
View Article and Find Full Text PDFThe Baltic Sea is one of the largest brackish water environments on earth and is characterised by pronounced physicochemical gradients and seasonal dynamics. Although the Baltic Sea has a long history of microscopy-based plankton monitoring, DNA-based metabarcoding has so far mainly been limited to individual transect cruises or time-series of single stations. Here we report a dataset covering spatiotemporal variation in prokaryotic and eukaryotic microbial communities and physicochemical parameters.
View Article and Find Full Text PDFThe diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species.
View Article and Find Full Text PDFIn this paper, an LC-MS/MS method for the simultaneous identification and quantification of cyanotoxins with hydrophilic and lipophilic properties in edible bivalves is presented. The method includes 17 cyanotoxins comprising 13 microcystins (MCs), nodularin (NOD), anatoxin-a (ATX-a), homoanatoxin (h-ATX) and cylindrospermopsin (CYN). A benefit to the presented method is the possibility for the MS detection of MC-LR-[Dha7] and MC-LR-[Asp3] as separately identified and MS-resolved MRM signals, two congeners which were earlier detected together.
View Article and Find Full Text PDFThe marine dinoflagellate Alexandrium Halim represents perhaps the most significant and intensively studied genus with respect to species diversity, life history strategies, toxigenicity, biogeographical distribution, and global magnitude and consequences harmful algal blooms (HABs). The socioeconomic impacts, environmental and human health risks, and mitigation strategies for toxigenic Alexandrium blooms have also been explored in recent years. Human adaptive actions based on future scenarios of bloom dynamics and shifts in biogeographical distribution under climate-change parameters remain under development and not yet implemented on a regional scale.
View Article and Find Full Text PDFThis paper summarizes the research conducted by the partners of the EU co-funded CoCliME project to ascertain the ecological, human health and economic impacts of Ostreopsis (mainly O. cf. ovata) blooms in the NW Mediterranean coasts of France, Monaco and Spain.
View Article and Find Full Text PDFDense blooms of filamentous cyanobacteria are recurrent phenomena in the Baltic Sea, with occasional negative effects on the surrounding ecosystem, as well as on tourism, human health, aquaculture, and fisheries. Establishing a climate service is therefore suggested; including multi-method observations of cyanobacteria biomass, biodiversity, and biogeography, in correspondence to biotic and abiotic factors. Three different approaches were compared for determination of spatial and temporal variability and trends of the blooms; 1) microscopy-based long-term data, 2) satellite remote sensing, and 3) phycocyanin fluorescence mounted on a merchant vessel.
View Article and Find Full Text PDFEpibenthic dinoflagellates occur globally and include many toxin-producing species of concern to human health and benthic ecosystem function. Such benthic harmful algal blooms (BHABs) have been well described from tropical and sub-tropical coastal environments, but assessments from north temperate waters, e.g.
View Article and Find Full Text PDFHigh-throughput sequencing-based analysis of microbial diversity has evolved vastly over the last decade. Currently, the go-to method for studying microbial eukaryotes is short-read metabarcoding of variable regions of the 18S rRNA gene with <500 bp amplicons. However, there is a growing interest in applying long-read sequencing of amplicons covering the rRNA operon for improving taxonomic resolution.
View Article and Find Full Text PDFHarmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish.
View Article and Find Full Text PDFGlobal trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort.
View Article and Find Full Text PDFAquatic phytoplankton experience large fluctuations in environmental conditions during seasonal succession and across salinity gradients, but the impact of this variation on their diversity is poorly understood. We examined spatio-temporal variation in nano- and microphytoplankton (> 2 µm) community structure using almost two decades of light-microscope based monitoring data. The dataset encompasses 19 stations that span a salinity gradient from 2.
View Article and Find Full Text PDFDense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year.
View Article and Find Full Text PDFAlmost every summer, dense blooms of filamentous cyanobacteria are formed in the Baltic Sea. These blooms may cause problems for tourism and ecosystem services, where surface accumulations and beach fouling are commonly occurring. Future changes in environmental drivers, including climate change and other anthropogenic disturbances, may further enhance these problems.
View Article and Find Full Text PDFThere is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages.
View Article and Find Full Text PDFBioluminescent dinoflagellates grow at one third the rate of their competitors of equivalent size, such as diatoms [1]. Despite this disadvantage, dinoflagellates successfully persist within phytoplankton communities and even form large blooms during favourable conditions. One explanation for this paradox is that bioluminescence acts as a defence that reduces losses to zooplankton grazers, such as copepods [2,3].
View Article and Find Full Text PDFA novel approach, termed Summed Positive Peaks (SPP), is proposed for determining phytoplankton abundances (Chlorophyll-a or Chl-a) and surface phytoplankton bloom extent in the optically complex Baltic Sea. The SPP approach is established on the basis of a baseline subtraction method using Rayleigh corrected top-of-atmosphere data from the Medium Resolution Imaging Spectrometer (MERIS) measurements. It calculates the reflectance differences between phytoplankton related signals observed in the MERIS red and near infrared (NIR) bands, such as sun-induced chlorophyll fluorescence (SICF) and the backscattering at 709nm, and considers the summation of the positive line heights for estimating Chl-a concentrations.
View Article and Find Full Text PDFMicrobial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope.
View Article and Find Full Text PDFClimate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms.
View Article and Find Full Text PDFCurrent anthropogenic carbon dioxide emissions generate besides global warming unprecedented acidification rates of the oceans. Recent evidence indicates the possibility that ocean acidification and low oceanic pH may be a major reason for several mass extinctions in the past. However, a major bottleneck for research on ocean acidification is long-term monitoring and the collection of consistent high-resolution pH measurements.
View Article and Find Full Text PDF