Publications by authors named "Bengong Zhang"

Research on cell differentiation facilitates a deeper understanding of the fundamental processes of life, elucidates the intrinsic mechanisms underlying diseases such as cancer, and advances the development of therapeutics and precision medicine. Existing methods for inferring cell differentiation trajectories from single-cell RNA sequencing (scRNA-seq) data primarily rely on static gene expression data to measure distances between cells and subsequently infer pseudotime trajectories. In this work, we introduce a novel method, scGRN-Entropy, for inferring cell differentiation trajectories and pseudotime from scRNA-seq data.

View Article and Find Full Text PDF

Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity.

View Article and Find Full Text PDF

RNAs play crucial roles in various essential biological functions, including catalysis and gene regulation. Despite the widespread use of coarse-grained (CG) models/simulations to study RNA 3D structures and dynamics, their direct application is challenging due to the lack of atomic detail. Therefore, the reconstruction of full atomic structures is desirable.

View Article and Find Full Text PDF

Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning.

View Article and Find Full Text PDF

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.

View Article and Find Full Text PDF

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.

View Article and Find Full Text PDF

Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality.

View Article and Find Full Text PDF

DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures.

View Article and Find Full Text PDF

Knowledge-based statistical potentials are very important for RNA 3-dimensional (3D) structure prediction and evaluation. In recent years, various coarse-grained (CG) and all-atom models have been developed for predicting RNA 3D structures, while there is still lack of reliable CG statistical potentials not only for CG structure evaluation but also for all-atom structure evaluation at high efficiency. In this work, we have developed a series of residue-separation-based CG statistical potentials at different CG levels for RNA 3D structure evaluation, namely cgRNASP, which is composed of long-ranged and short-ranged interactions by residue separation.

View Article and Find Full Text PDF

Drug addiction is a global public health crisis, and the design of antiaddiction drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug addiction learning (TIDAL) built from integrating multiscale topological Laplacians, deep bidirectional transformer, and ensemble-assisted neural networks (EANNs).

View Article and Find Full Text PDF

The 3D architectures of RNAs are essential for understanding their cellular functions. While an accurate scoring function based on the statistics of known RNA structures is a key component for successful RNA structure prediction or evaluation, there are few tools or web servers that can be directly used to make comprehensive statistical analysis for RNA 3D structures. In this work, we developed RNAStat, an integrated tool for making statistics on RNA 3D structures.

View Article and Find Full Text PDF

The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.

View Article and Find Full Text PDF

Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information.

View Article and Find Full Text PDF

Apart from intrinsic stochastic variability, gene expression also involves stochastic reaction delay arising from heterogeneity and fluctuation processes, which can affect the efficiency of reactants (e.g., mRNA or protein) in exploring their environments.

View Article and Find Full Text PDF

As an extremely common structural motif, RNA hairpins with bulge loops [e.g., the human immunodeficiency virus type 1 (HIV-1) transactivation response (TAR) RNA] can play essential roles in normal cellular processes by binding to proteins and small ligands, which could be very dependent on their three-dimensional (3D) structures and stability.

View Article and Find Full Text PDF

The activation of a gene is a complex biochemical process and could involve small steps, creating a memory between individual events. However, the effect of this molecular memory was often neglected in previous work. How the molecular memory affects gene expression remains not fully explored.

View Article and Find Full Text PDF