Ongoing research efforts to identify potent regulatory sequences that deliver robust and sustained transgene expression are critical for Chinese hamster ovary (CHO) cell line development technologies to meet the growing demand for recombinant proteins. Here we report the engineering and validation of a highly customizable single vector toolkit that comprises an all-in-one dual luciferase reporter system for quantitative and systematic interrogation of transcriptional regulatory sequences in transient and stable transfectants of CHO cells. To model the execution of the reporter system, we implemented a battery of known constitutive promoters including human CMV-mIE, SV40, HSV-TK, mouse PGK, human EF1α, EF1α short (EFS), human UBC, synthetic CAG, and Chinese hamster EF1α (CHEF1α).
View Article and Find Full Text PDFCellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions. In the last few decades, novel cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest.
View Article and Find Full Text PDF