Previous studies have shown mitochondrial dysfunction in schizophrenia (SZ) patients, which may be caused by mitochondrial DNA (mtDNA) alterations. However, there are few studies in SZ that have analyzed mtDNA in brain samples by next-generation sequencing (NGS). To address this gap, we used mtDNA-targeted NGS and qPCR to characterize mtDNA alterations in brain samples from patients with SZ (n = 40) and healthy controls (HC) (n = 40).
View Article and Find Full Text PDFThe brain-derived neurotrophic factor (BDNF) single nucleotide polymorphism (SNP) rs6265C > T, Val66Met, affects BDNF secretion and has been related to inflammatory processes. Both the rs6265 and BDNF protein levels have been widely investigated in neuropsychiatric disorders with conflicting results. In the present study we examined BDNF mRNA expression in blood considering the SNP rs6265 and its relationship with inflammatory markers in the early stages of psychosis.
View Article and Find Full Text PDFBackground: Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders.
View Article and Find Full Text PDFPathogenic variants within mitochondrial tRNA and rRNA genes negatively affect protein synthesis function and cause oxidative phosphorylation defects. The majority of mitochondrial cytopathies are caused by pathogenic point variants within the mitochondrial tRNA gene for leucine (). This study was designed to evaluate a novel amplification-refractory mutation system (ARMS)-PCR based assay to screen patient samples with a clinical diagnosis of mitochondrial cytopathies.
View Article and Find Full Text PDF