Cross-contamination during pharmaceutical drug manufacturing can result in expensive recalls. To counter that, companies spend significant time and resources to ensure equipment cleanliness, often relying on the compound solubility data in various solvents as the main indicator of cleaning success. The aim of this work is to provide an alternative way to analyze the fouling and cleaning of surfaces in pharmaceutical manufacturing processes by using the quartz crystal microbalance with dissipation (QCM-D) and Raman spectroscopy.
View Article and Find Full Text PDFA laboratory-assembled surfactant-assisted pressurized liquid extraction system at room temperature was used for the extraction of glycyrrhizin (GLY) in Radix glycyrrhizae. Environmentally friendly saccharide fatty acid ester such as glucose oleic acid ester is proposed to replace chemical-based surfactants. As the chemical properties of the surfactant obtained were unknown initially, lipase-catalyzed synthesis and liquid chromatography with tandem mass spectrometry were used to ascertain the identity.
View Article and Find Full Text PDFMechanical characteristics of DNA in the sub-persistence-length (lP ≈ 150 base pairs) regime are vital to many of its biological functions but not well understood. Recent experimental studies in this regime have shown a dramatic departure from the traditional worm-like chain model, which is designed for long DNA chains and predicts a constant flexibility at all length scales. Here, we report an improved model with explicit considerations of a new length scale lD ≈ 10 base pairs, over which DNA local bend angles are correlated.
View Article and Find Full Text PDFA "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water.
View Article and Find Full Text PDFWe report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb(2+)) ions from water. Magnetite-waste tea composites were dispersed in four different types of water-deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater-that mimic actual environmental conditions. The water samples had varying initial concentrations (0.
View Article and Find Full Text PDFWe report a study of DNA deformations using a coarse-grained mechanical model and quantitatively interpret the allosteric effects in protein-DNA binding affinity. A recent single-molecule study (Kim et al. Science 2013, 339, 816) showed that when a DNA molecule is deformed by specific binding of a protein, the binding affinity of a second protein separated from the first protein is altered.
View Article and Find Full Text PDFThe mobility and deposition of capped silver (Ag) nanoparticles (NPs) on silica surfaces were characterized over a wide range of pH and ionic strength (IS) conditions, including seawater and freshwater. Two common organic capping agents (citrate and PVP) were evaluated. Both the capped Ag NPs and the silica surfaces were negatively charged under these environmentally relevant conditions, resulting in net repulsive electrostatics under most conditions.
View Article and Find Full Text PDFPlant materials have long been demonstrated to sorb organic compounds. However, there are no known reports about pollen grains acting as sorbents to remove hydrophobic organic compounds (HOCs) such as pesticides, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from contaminated waters. We report a facile and effective method to remove HOCs from water using magnetized short ragweed (Ambrosia artemisiifolia) pollen grains.
View Article and Find Full Text PDFThe aggregation kinetics of TiO(2) nanoparticles was studied in the absence and presence of Suwanee River humic acid (SRHA) in either NaCl or CaCl(2) electrolytes. The CCC[Ca(2+)]/CCC[Na(+)] ratios were found to yield a proportionality fraction of z(-7.2) (in the absence of SRHA) and z(-5.
View Article and Find Full Text PDFEngineered nanoparticles are used increasingly in numerous commercial products, leading to concerns over their environmental fate and ecotoxicity. We report the adaptation of colloid probe atomic force microscopy (AFM) to quantitatively determine the adhesive behavior of gold nanoparticles (Au NPs) with mica, chosen as a model for sand, in various water chemistries. Au NP-covered polystyrene (PS) beads were prepared by a combined swelling-heteroaggregation (CSH) technique prior to attachment to tipless AFM cantilevers.
View Article and Find Full Text PDFPollen is a leading contributor to asthma and allergies, yet pollen adhesion to common indoor surfaces is not well understood. We report the adhesive behavior of short ragweed (A. artemisiifolia) pollen grains with Nylon 6 (N6) and Nylon 6,6 (N66), chosen due to their use in synthetic carpet, and three control surfaces: polyamide 12 (PA12), polystyrene (PS), and silicon.
View Article and Find Full Text PDFAdhesion between zeolites and polymers is a central factor in achieving defect-free mixed-matrix membranes for energy-efficient gas separations. In this work, atomic force microscopy (AFM) was used to measure adhesion forces between a pure silica MFI (ZSM-5: Zeolite Socony Mobil-Five) (010) zeolite probe and a series of polyimide (Matrimid 5218, 6FDA-DAM, 6FDA-6FpDA, and 6FDA-DAM:DABA (3:2)) and polyetherimide (Ultem 1000) polymers in air. Combined with measurements of surface energy of the polymer surfaces, the dependence of adhesion on polymer structure was determined.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2008
Atomic force microscopy (AFM) was used to measure adhesion forces between E. coli bacteria and surfaces consisting of a series of polyamides and polystyrene, materials that are prominent in carpeting, upholstery, and other indoor surfaces. Bioparticle adhesion to such surfaces in air is poorly understood, yet these interactions are thought to play a key role in their accumulation and release as indoor air pollutants.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2007
This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.
View Article and Find Full Text PDF