Publications by authors named "Benfenati E"

Synthetic cathinones (SCs), a group of new psychoactive substances (NPS), are designer molecules with hallucinogenic and psychostimulatory effects. Although the structural similarities of SCs to amphetamines suggest that they may have similar toxicity profiles to those of amphetamine congeners, little is known about SCs from a toxicological point of view. In the present study, the toxicity profiles of commonly encountered SCs ( = 65), listed in the 2020 Report of the United Nations Office on Drugs and Crime (UNODC), were evaluated using in silico methods.

View Article and Find Full Text PDF

In this study, models for NOEL (No Observed Effect Level) and NOEC (No Observed Effect Concentration) related to long-term/reproduction toxicity of various organic pesticides are built up, evaluated, and compared with similar models proposed in the literature. The data have been obtained from the EFSA OpenFoodTox database, collecting only data for the Bobwhite quail (. Models have been developed using the CORAL-2023 program, which can be used to develop quantitative structure-property/activity relationships (QSPRs/QSARs) and the Monte Carlo method for the optimization of the model.

View Article and Find Full Text PDF

This study presents a quantitative read-across structure-property relationship (q-RASPR) approach that integrates the chemical similarity information used in read-across with traditional quantitative structure-property relationship (QSPR) models. This novel framework is applied to predict the physicochemical properties and environmental behaviors of persistent organic pollutants, specifically polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). By utilizing a curated dataset and incorporating similarity-based descriptors, the q-RASPR approach improves the accuracy of predictions, particularly for compounds with limited experimental data.

View Article and Find Full Text PDF

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically regarding vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet.

View Article and Find Full Text PDF

The adverse outcome pathway (AOP) concept has gained attention as a way to explore the mechanism of chemical toxicity. In this study, quantitative structure-activity relationship (QSAR) models were developed to predict compound activity toward protein targets relevant to molecular initiating events (MIE) upstream of organ-specific toxicities, namely liver steatosis, cholestasis, nephrotoxicity, neural tube closure defects, and cognitive functional defects. Utilizing bioactivity data from the ChEMBL 33 database, various machine learning algorithms, chemical features and methods to assess prediction reliability were compared and applied to develop robust models to predict compound activity.

View Article and Find Full Text PDF

The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks.

View Article and Find Full Text PDF

Innovative tools suitable for chemical risk assessment are being developed in numerous domains, such as non-target chemical analysis, omics, and computational approaches. These methods will also be critical components in an efficient early warning system (EWS) for the identification of potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus computational methodologies complemented with fast screening techniques will be critical.

View Article and Find Full Text PDF

A new tool, VERMEER FCM, was developed to support the risk assessment of single organic chemicals migrating from plastic food contact materials (FCM). The freely available tool is integrated into MERLIN-Expo and has been designed in line with Regulation (EU) No 10/2011 for plastic FCM. Overall, the tool consists of three modules that allow (i) to model the migration of chemicals into food, (ii) to predict toxicological endpoints relevant to risk assessment of FCM chemicals, and (iii) to automatically check whether the chemical of interest is included in Regulation (EU) No 10/2011.

View Article and Find Full Text PDF

Toxicologists and authorities evaluate substances that in the traditional way refer to data and knowledge on the toxic mechanism. Non-testing methods (NTMs) proved to be a valuable resource for risk assessment of chemical substances. Indeed, they can be particularly useful when the information provided by different sources is integrated to increase confidence in the result.

View Article and Find Full Text PDF

This article aims to provide a comprehensive critical, yet readable, review of general interest to the chemistry community on molecular similarity as applied to chemical informatics and predictive modeling with a special focus on read-across (RA) and read-across structure-activity relationships (RASAR). Molecular similarity-based computational tools, such as quantitative structure-activity relationships (QSARs) and RA, are routinely used to fill the data gaps for a wide range of properties including toxicity endpoints for regulatory purposes. This review will explore the background of RA starting from how structural information has been used through to how other similarity contexts such as physicochemical, absorption, distribution, metabolism, and elimination (ADME) properties, and biological aspects are being characterized.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are chemicals that can interfere with homeostatic processes. They are a major concern for public health, and they can cause adverse long-term effects such as cancer, intellectual impairment, obesity, diabetes, and male infertility. The endocrine system is a complex machinery, with the estrogen (E), androgen (A), and thyroid hormone (T) modes of action being of major importance.

View Article and Find Full Text PDF

Typical in silico models for ecotoxicology focus on a few endpoints, but there is a need to increase the diversity of these models. This study proposes models using the NOEC for the harlequin fly () and EC50 for swollen duckweed () for the first time. The data were derived from the EFSA OpenFoodTox database.

View Article and Find Full Text PDF

The Virtual Extensive Read-Across software (VERA) is a new tool for read-across using a global similarity score, molecular groups, and structural alerts to find clusters of similar substances; these clusters are then used to identify suitable similar substances and make an assessment for the target substance. A beta version of VERA GUI is free and available at vegahub.eu; the source code of the VERA algorithm is available on GitHub.

View Article and Find Full Text PDF

Models of toxicity to tadpoles have been developed as single parameters based on special descriptors which are sums of correlation weights, molecular features, and experimental conditions. This information is presented by quasi-SMILES. Fragments of local symmetry (FLS) are involved in the development of the model and the use of FLS correlation weights improves their predictive potential.

View Article and Find Full Text PDF
Article Synopsis
  • Human health risk assessment traditionally relies on animal testing, guided by OECD standards, but newer methods using human-relevant in vitro models and computational approaches are proving advantageous.
  • The evolution of Next Generation Risk Assessment (NGRA) emphasizes new methodologies and physiologically based kinetic (PBK) modeling, yet often overlooks the integration of human biomonitoring (HBM) data, which is key to enhancing risk assessment accuracy.
  • Combining toxicokinetics, PBK models, and HBM data allows for a more comprehensive understanding of chemical exposure impacts, moving away from animal-based methods toward human-centered assessments that consider aggregate and cumulative exposures.
View Article and Find Full Text PDF

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles.

View Article and Find Full Text PDF

Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated AI models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise.

View Article and Find Full Text PDF

The OECD recognizes that data on a compound's ability to treat eye irritation are essential for the assessment of new compounds on the market. In silico models are frequently used to provide information when experimental data are lacking. Semi-correlations, as they are called, can be useful to build up categorical models for eye irritation.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) models are powerful in silico tools for predicting the mutagenicity of unstable compounds, impurities and metabolites that are difficult to examine using the Ames test. Ideally, Ames/QSAR models for regulatory use should demonstrate high sensitivity, low false-negative rate and wide coverage of chemical space. To promote superior model development, the Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR International Challenge Project (2020-2022) as a successor to the First Project (2014-2017), with 21 teams from 11 countries participating.

View Article and Find Full Text PDF

Data on Henry's law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry's law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those that are capable of long-term movements over long distances.

View Article and Find Full Text PDF

Most quantitative structure-property/activity relationships (QSPRs/QSARs) techniques involve using different programs separately for generating molecular descriptors and separately for building models based on available descriptors. Here, the capabilities of the CORAL program are evaluated. A user of the program should apply as the basis for models the representation of the molecular structure by means of the simplified molecular input-line entry system (SMILES) as well as experimental data on the endpoint of interest.

View Article and Find Full Text PDF

The assessment of cardiotoxicity is a persistent problem in medicinal chemistry. Quantitative structure-activity relationships (QSAR) are one possible way to build up models for cardiotoxicity. Here, we describe the results obtained with the Monte Carlo technique to develop hybrid optimal descriptors correlated with cardiotoxicity.

View Article and Find Full Text PDF

We have reported here a quantitative read-across structure-activity relationship (q-RASAR) model for the prediction of binary mixture toxicity (acute contact toxicity) in honey bees. Both the quantitative structure-activity relationship (QSAR) and the similarity-based read-across algorithms are used simultaneously for enhancing the predictability of the model. Several similarity and error-based parameters, obtained from the read-across prediction tool, have been put together with the structural and physicochemical descriptors to develop the final q-RASAR model.

View Article and Find Full Text PDF